时间序列:R语言ARMA-GARCH模型

该博客通过R语言对时间序列数据进行分析,首先读取并绘制时序图,然后进行平稳性检验和ADF单位根检验。结果显示数据经过一阶差分后变得平稳,适合构建ARMA(1,1)模型。接着,使用`auto.arima`自动定阶,确认了模型参数。最后,进行了ARCH效应检验和GARCH模型的拟合,探讨了数据的波动性。" 121323932,11613828,C语言声明详解,"['C语言', '后端开发', '编程基础']
摘要由CSDN通过智能技术生成

ARMA:

#读入数据,并绘制时序图

d<-read.table("C:/Users/haha/Desktop/R/zuoye/1.txt")

x<-ts(log(d),start = 1)

 

1: x的时间序列图:

x<-ts(log(d),start = 1)

plot(x)

 

2:

 

从上图可以看出x.dif序列值在0的附近波动,没有存在显著地波动起伏大的情况,基本为平稳特征.

 

3.

variance.model = list(model = "sGARCH", garchOrder = c(1, 1),submodel = NULL, external.regressors = NULL, variance.targeting = FALSE) distribution.model = "norm" ugarchfit(spec, datax, out.sample = 0, solver = "solnp", solver.control = list(),fit.control = list(stationarity = 1, fixed.se = 0, scale = 0)) myspec=ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1), submodel = NULL, external.regressors = NULL, variance.targeting = FALSE), mean.model = list(armaOrder = c(1, 1), include.mean = TRUE, archm = FALSE, archpow = 1, arfima = FALSE, external.regressors = NULL, archex = FALSE), distribution.model = "norm") myfit=ugarchfit(myspec,data=datax,solver="solnp") #rugarch包中模型结果的提取要依靠as.data.frame函数。比如提取模型的拟合值 as.data.frame(myfit,which="fitted") #提取残差序列: as.data.frame(myfit,which=" residuals") #提取方差序列: as.data.frame(myfit,which="sigma") #当然,也可以同时查看所有: as.data.frame(myfit,which=all) #通过plot(myfit)可以对模型结果进行图形诊断: plot(myfit) #如果模型通过检验,可以用ugarchforcast函数对未来进行预测: for<-ugarchforcast(myfit,n.ahead=20) library(zoo) #时间格式预处理 library(xts) #同上 library(timeSeires) #同上 library(urca) #进行单位根检验 library(tseries) #arma模型 library(fUnitRoots) #进行单位根检验 library(FinTS) #调用其中的自回归检验函数 library(fGarch) #GARCH模型 library(nlme) #调用其中的gls函数 library(fArma) #进行拟合和检验
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值