多元线性回归-EViews

本文介绍了如何在EViews中进行多元线性回归分析,包括模型设定、估计方法以及如何识别和修正多重共线性问题。通过简单相关系数检验和综合判断法展示了模型存在的共线性问题,并探讨了加权最小二乘法、异方差性修正和自相关性的检查方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分享经典书籍: A Modern Approach to Regression with R.pdf  

链接: https://pan.baidu.com/s/14NJt7CrOpUUe2hYyrJn_rg  提取码: 7fv6  

多元线性回归

掌握多元线性回归模型的估计方法、掌握多重共线性模型的识别和修正。

多元线性回归模型,并识别和修正多重共线性。

普通最小二乘法、简单相关系数检验法、综合判断法、逐步回归法。

最小二乘估计的原理、t检验、F检验、拟合优度R方值。

 

OLS估计模型

设定多元线性回归模型为:

y=a0+a1*x1+a2*x2+a3*x3+a4*x4

用普通最小二乘法进行估计,点击主界面菜单Quick\Estimate Equation,在弹出的对话框中输入:Y C X1 X2 X3 X4,点击确定即可得到回归结果,如图2所示。

根据图2中的数据,可得到模型的估计结果为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值