其实就是查找前驱和后继的问题, 因为绝对值最小的情况,一定是前驱和后继和k的绝对值。
这里处理有一个小方法, 一开始在树中加入maxnum和minnum2个值。 树有2个节点,就为空树。这样就不会有不存在前驱和后继的情况了。
同时还用到一个技巧,flag。 flag=0和1. 如果读入的是0和1,和flag相同就插入,否则就删除。 如果树的节点数量为2,那么flag^=flag即可。
长期使用的ZKW splay时间效率还不错。
这题有几个细节:
1、答案要mod
2、在比较出前驱和后继谁更优之前不能MOD(我在这里卡了一会儿……WA掉5个数据)
3、想省事就long long吧……
Accepted | 100 | 137 ms | 1752 KB | 3.2 KB | G++ |
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define LL long long
const LL maxint = 120000000000LL;
struct node
{
node *c[2];
LL key, size;
node()
{
key = 0, size = 0, c[0] = c[1] = this;
}
node(LL KEY_,node *c0, node *c1)
{
key = KEY_;
c[0] = c0;
c[1] = c1;
}
node* rz(){return size = c[0] -> size + c[1] -> size + 1, this;}
}Tnull, *null = &Tnull;
struct splay
{
node *root;
splay()
{
root = (new node(*null)) -> rz();
root -> key = maxint;
}
inline void zig(int d)
{
node *t = root -> c[d];
root -> c[d] = null -> c[d];
null -> c[d] = root;
root = t;
}
inline void zigzig(int d)
{
node *t = root -> c[d] -> c[d];
root -> c[d] -> c[d] = null -> c[d];
null -> c[d] = root -> c[d];
root -> c[d] = null -> c[d] -> c[!d];
null -> c[d] -> c[!d] = root -> rz();
root =t;
}
inline void finish(int d)
{
node *t = null -> c[d], *p = root -> c[!d];
while (t != null)
{
t = null -> c[d] -> c[d];
null -> c[d] -> c[d] = p;
p = null -> c[d] -> rz();
null -> c[d] = t;
}
root -> c[!d] = p;
}
inline void select(int k)//找左儿子有k个size的节点
{
int t;
while (1)
{
bool d = k > (t = root -> c[0] -> size) ;
if (k == t || root -> c[d] == null) break;
if (d) k -= t + 1;
bool dd = k > (t = root -> c[d] -> c[0] -> size);
if (k == t || root -> c[d] -> c[dd] == null) {zig(d); break;}
if (dd) k-= t+ 1;
d != dd ? zig(d), zig(dd) : zigzig(dd);
}
finish(0), finish(1);
root -> rz();
}
inline void search(LL x)
{
while (1)
{
bool d = x > root -> key;
if (root -> c[d] == null) break;
bool dd = x > root -> c[d] -> key;
if (root -> c[d] -> c[dd] == null){zig(d); break;}
d != dd ? zig(d), zig(dd) : zigzig(d);
}
finish(0), finish(1);
root -> rz();
if (x > root -> key) select(root -> c[0] -> size + 1);
}
inline void ins(LL x)
{
search(x);
node *oldroot = root;
root = new node(x, oldroot -> c[0], oldroot);
oldroot -> c[0] = null;
oldroot -> rz();
root -> rz();
}
void Tdel(LL x)
{
search(x);
node *oldroot=root;
root=root->c[1];
select(0);
root->c[0]=oldroot->c[0];
root->rz();
delete oldroot;
}
inline void del(LL x)
{
search(x);
node *oldroot = root;
root = root -> c[1];
select(0);
root -> c[0] = oldroot -> c[0];
root -> rz();
delete oldroot;
}
inline LL sel(int k) {return select(k - 1), root -> key;}
inline int ran(LL x) {return search(x), root -> c[0] -> size + 1;}
}sp;
LL flag , tmp, last_flag = -1, ans = 0, tmp_ans;
LL a, b, rank;
int n;
int main()
{
scanf("%d", &n);
sp.ins(-120000000000LL);
while (n--)
{
scanf("%d%lld", &flag, &tmp);
if (sp.root -> size == 2) last_flag = flag;
if (flag == last_flag) sp.ins(tmp);
else{
rank = sp.ran(tmp);
a = sp.sel(rank - 1); //比tmp小的数字
b = sp.sel(rank);//比tmp大的数字
tmp_ans = tmp - a; //默认答案是比tmp小的
if (tmp_ans <= b - tmp) sp.del(a);
else
{
tmp_ans = b- tmp;
sp.del(b);
}
ans = (tmp_ans + ans) % 1000000;
}
}
printf("%lld\n", ans);
return 0;
}