【目标检测】YOLO-Lite阅读笔记

本文介绍YOLO-Lite,一种针对无GPU设备优化的轻量级实时目标检测算法。通过减少输入图像分辨率、移除BN层、采用深度可分离卷积等手段,有效提升了检测速度,同时保持了较高的mAP。适用于资源受限的嵌入式平台。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

github:YOLO-Lite
在这里插入图片描述
当YOLOv2-Tiny在无GPU的平台运行时,FPS由224降低为2.4。

对于无GPU的设备来讲,tiny-yolo很难达到实时。

yolo-lite----mAP和FPS

mAP:Filters、Layers

FPS:FLOPS
在这里插入图片描述

Architecture

在这里插入图片描述
在这里插入图片描述

BN

不使用BN。BN层并不能很大幅度的提升算法性能,尤其是在模型网络层数很浅的情况下。但是BN层却会增加很多计算开销,于是yolo lite的作者直接去掉了BN层。

Image Size

输入图像的分辨率由416x416减小为224x224,从而降低FLOPS,增加FPS。

在这里插入图片描述

其他方法
Pruning

基于重要性,去掉某些权重

去掉某些低于阈值的权重

conv

使用深度可分离卷积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值