1.
先去官网下载源码https://github.com/ppogg/YOLOv5-Lite
点击上面这个选择zip格式 ,之后进行解压,之后安装pychar(俺安装的2024.1.4),python版本为3.9,可以去搜索一下安装教程,
用pychar打开yolov5_lite工程,点击这个
打开,选择新窗口
打开后
这样滴,之后安装yolov5_lite的环境 ,打开左下角的终端,输入
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
用临时清华源下载
出现successfully就安装成功了,后面是更新pip更新一下吧,
之后去官网下载权重文件
v5lite_s,复制到yolov5的文件夹
俺们运行detect.py文件试一下
终端输入python detect.py
或者点击运行·也可以·
这个时候会有错误
说没有requests模块,那俺们就安装
打开终端输人pip install requests安装
在运行,如果上方pychar提醒有什么要求没有安装安装就好了
还会报错numpy版本不对,输人pip install numpy==1.23
换一下低版本
俺们可能会有这个错误,这个错误俺现在也不会
现在俺们先来训练
点击train.py程序打开
之后现在俺们来制作数据集先在这样的路径下创建这样的文件夹
前面的daatad文件名可以改train,vall也可以改
之后再这两个文件中创建这样的文件夹名字不要改
第一个是images,labels文件名不要改,vall里面的可以改,images存放图片,labels存放标签
之后在pychar终端输入pip install labelimg
安装成功后打开,终端输入labelimg,之后俺们用这个来标记标签,打开后为这样
之后点击open dir打开图片存放的文件夹就是这个
之后点击下面拉个save dir打开存放标签的文件夹就是labels文件夹
之后点击view勾上第一个,开始标记,下发如果没有yolov这个图标,点一下可以切换,得到的就是yolo的标签格式,按w开始画框标记
输入标签名字一个标签基本不用管什么,多个注意一下后面,点击箭头下一个,也可以用快捷键俺不会,可能会弹出一个东西,点击yes就可以啦,之后再labels文件夹就可以看到标签啦
calsses里面就是俺们的标签名字,其他的就是每张图片的标签
之后俺们来写一个文件在yolov5_lite_master文件夹的data文件夹里面创建一个
mydate.txtw文件,之后再里面这样写
train后面就是这个地址对应前面
val就是验证集的位置,
nc就是标签种类的个数
names就是标签名字
之后将mydate.txt改为mydate.yaml文件
到此俺们的训练集已经弄好了之后打开pychar打开tarin.py程序
这里
更改一些东西
下拉到这里更改这一行
将coco.yaml改为俺们自己的mydate.yaml
再改一下这里
0改为cpu,之后运行train程序
这里俺出现了一个错误,因为俺是复制第,没有改为路径,注意哦
之后再编译可能会出现无法转化为float无法转换
可以用crrl+f来搜索gain
之后就可以开始正常训练啦
大家以后下载其他yolo的时候尽量下通过code下载这个源码,下载其他版本会有很多问题
大家如果遇到页面文件太小的问题,可以看这个
之后还有yolov5_1.5版本还有一些报错就是找不到v5lite文件,就是这里的问题
可能
这里有的大小写有问题,还有前面俺这个weights/v5lite这个l是大写俺改过来了,但是不影响,其他可能会对程序有影响导致找不到这个文件
还有的就是export文件转onnx文件的错误,这个错误下载的yolov5_Lite_1.5这里
这里可能多一个点删掉就可以啦,但是通过code下载的没有
俺们训练好了就是这样滴
存放在后面这个文件夹中的
这个就是俺们得到的啦
weights存放的是权重文件,yolov5其他的部署方法差不多,数据集的创建也差不多,
还有一些细节部分可能没有写到,这个是用cpu训练滴
GPU训练部署环境比较复杂,但是速度确实快,可以去试试,大家可以去看一下anaconda安装虚拟环境,
前面的那个问题俺也不知道是为啥,没有找到解决方法,大家如果知道可以告诉俺一下
遇到什么没有的,可以去看一下官方的源码,可以找到解决方法