yolov5——lite在电脑上部署全过程,以及进行训练

参考:https://blog.csdn.net/black_sneak/article/details/131374492?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522172105470216800188520940%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=172105470216800188520940&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-131374492-null-null.142^v100^pc_search_result_base4&utm_term=yolov5LIte&spm=1018.2226.3001.4187

1.

先去官网下载源码https://github.com/ppogg/YOLOv5-Lite

        

点击上面这个选择zip格式 ,之后进行解压,之后安装pychar(俺安装的2024.1.4),python版本为3.9,可以去搜索一下安装教程,

 用pychar打开yolov5_lite工程,点击这个

打开,选择新窗口

打开后

这样滴,之后安装yolov5_lite的环境 ,打开左下角的终端,输入

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

用临时清华源下载

 

 出现successfully就安装成功了,后面是更新pip更新一下吧,

之后去官网下载权重文件

v5lite_s,复制到yolov5的文件夹

俺们运行detect.py文件试一下

终端输入python detect.py

或者点击运行·也可以·

这个时候会有错误

 说没有requests模块,那俺们就安装

打开终端输人pip install requests安装

在运行,如果上方pychar提醒有什么要求没有安装安装就好了

还会报错numpy版本不对,输人pip install numpy==1.23

换一下低版本

俺们可能会有这个错误,这个错误俺现在也不会

现在俺们先来训练

点击train.py程序打开 

之后现在俺们来制作数据集先在这样的路径下创建这样的文件夹

 前面的daatad文件名可以改train,vall也可以改

之后再这两个文件中创建这样的文件夹名字不要改

 第一个是images,labels文件名不要改,vall里面的可以改,images存放图片,labels存放标签

 之后在pychar终端输入pip install labelimg

安装成功后打开,终端输入labelimg,之后俺们用这个来标记标签,打开后为这样

之后点击open dir打开图片存放的文件夹就是这个

 之后点击下面拉个save dir打开存放标签的文件夹就是labels文件夹

之后点击view勾上第一个,开始标记,下发如果没有yolov这个图标,点一下可以切换,得到的就是yolo的标签格式,按w开始画框标记

输入标签名字一个标签基本不用管什么,多个注意一下后面,点击箭头下一个,也可以用快捷键俺不会,可能会弹出一个东西,点击yes就可以啦,之后再labels文件夹就可以看到标签啦

 calsses里面就是俺们的标签名字,其他的就是每张图片的标签

之后俺们来写一个文件在yolov5_lite_master文件夹的data文件夹里面创建一个

mydate.txtw文件,之后再里面这样写

train后面就是这个地址对应前面

val就是验证集的位置,

nc就是标签种类的个数

names就是标签名字

之后将mydate.txt改为mydate.yaml文件

到此俺们的训练集已经弄好了之后打开pychar打开tarin.py程序

这里

更改一些东西

 下拉到这里更改这一行

 将coco.yaml改为俺们自己的mydate.yaml

再改一下这里 

 

 0改为cpu,之后运行train程序

 这里俺出现了一个错误,因为俺是复制第,没有改为路径,注意哦

之后再编译可能会出现无法转化为float无法转换

参考这个解决yolov5训练模型时result type Float can‘t be cast to the desired output type __int64_yolov5 导出为什么是int64,如何改为32-CSDN博客

可以用crrl+f来搜索gain 

 

之后就可以开始正常训练啦

大家以后下载其他yolo的时候尽量下通过code下载这个源码,下载其他版本会有很多问题

大家如果遇到页面文件太小的问题,可以看这个

ImportError: DLL load failed: 页面文件太小,无法完成操作。_importerror: dll load failed while importing cv2: -CSDN博客

之后还有yolov5_1.5版本还有一些报错就是找不到v5lite文件,就是这里的问题

可能

 这里有的大小写有问题,还有前面俺这个weights/v5lite这个l是大写俺改过来了,但是不影响,其他可能会对程序有影响导致找不到这个文件

还有的就是export文件转onnx文件的错误,这个错误下载的yolov5_Lite_1.5这里

这里可能多一个点删掉就可以啦,但是通过code下载的没有

俺们训练好了就是这样滴

 存放在后面这个文件夹中的

这个就是俺们得到的啦

weights存放的是权重文件,yolov5其他的部署方法差不多,数据集的创建也差不多,

还有一些细节部分可能没有写到,这个是用cpu训练滴

GPU训练部署环境比较复杂,但是速度确实快,可以去试试,大家可以去看一下anaconda安装虚拟环境, 

前面的那个问题俺也不知道是为啥,没有找到解决方法,大家如果知道可以告诉俺一下

遇到什么没有的,可以去看一下官方的源码,可以找到解决方法

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值