1 概述
你有没有想过你的智能手机是如何理解语音指令的?或者 Alexa 和 Siri 等语音助手如何处理您的命令?这种卓越能力背后的机制在很大程度上归功于一种称为 Mel 频率倒谱系数 (MFCC) 的方法。
语音识别技术允许机器解释人类语音,将口语转换为计算机可以操纵的格式。这项技术对于开发交互式和响应式 AI 至关重要,例如声控助手、自动化客户服务系统和实时翻译服务。
1.1 什么是MFCC?
MFCC 代表 Mel 频率倒谱系数。这是用于自动语音和说话人识别的功能。从本质上讲,这是一种表示声音的短期功率谱的方法,可帮助机器更有效地理解和处理人类语音。将您的声音想象成一个独特的指纹。MFCC 的功能类似于捕获语音的显著特征的唯一代码,并使计算机能够区分不同的单词和声音。在计算机必须将口语翻译成文本的语音识别应用程序中,此代码特别有用。
1.2 Mel 频率倒谱系数 (MFCC) 的作用
MFCC 是人类在说话时产生的声带的数学表示。该过程涉及几个步骤,以捕捉人耳最容易识别的人类语音的基本特征。 以下是 MFCC 如何有助于理解语音:
信号分析:语音是一个复杂的信号,其特征是频率和振幅不同。MFCC 有助于将这些信号分解为更简单的分量,这些分量表示声波随时间变化的速