基于MATLAB实现语音信号MFCC特征提取(附完整代码)

1 概述

你有没有想过你的智能手机是如何理解语音指令的?或者 Alexa 和 Siri 等语音助手如何处理您的命令?这种卓越能力背后的机制在很大程度上归功于一种称为 Mel 频率倒谱系数 (MFCC) 的方法。
语音识别技术允许机器解释人类语音,将口语转换为计算机可以操纵的格式。这项技术对于开发交互式和响应式 AI 至关重要,例如声控助手、自动化客户服务系统和实时翻译服务。

1.1 什么是MFCC?

MFCC 代表 Mel 频率倒谱系数。这是用于自动语音和说话人识别的功能。从本质上讲,这是一种表示声音的短期功率谱的方法,可帮助机器更有效地理解和处理人类语音。将您的声音想象成一个独特的指纹。MFCC 的功能类似于捕获语音的显著特征的唯一代码,并使计算机能够区分不同的单词和声音。在计算机必须将口语翻译成文本的语音识别应用程序中,此代码特别有用。

1.2 Mel 频率倒谱系数 (MFCC) 的作用

MFCC 是人类在说话时产生的声带的数学表示。该过程涉及几个步骤,以捕捉人耳最容易识别的人类语音的基本特征。 以下是 MFCC 如何有助于理解语音:
信号分析:语音是一个复杂的信号,其特征是频率和振幅不同。MFCC 有助于将这些信号分解为更简单的分量,这些分量表示声波随时间变化的速

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LEEE@FPGA

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值