【PyTorch】循环神经网络/Recurrent Neural Network(RNN)

1 模型描述

  • 用PyTorch实现循环神经网络,主要手段是使用nn.modual构建RNN类
  • 解决的问题是手写数据MNIST分类
  • RNN模型结构中还需要调用nn.LSTM模型,

2 具体代码

# recurrent neural network
import torch 
import torch.nn as nn
import torchvision 
import torchvision.transforms as transforms 

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # cuda or cpu

# Hyper-parameters
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.01

#MNIST dataset
train_dataset = torchvision.datasets.MNIST(
    root = 'data',
    train = True,
    transform = transforms.ToTensor(),
    download = True
)

test_dataset = torchvision.datasets.MNIST(
    root = 'data',
    train = False,
    transform = transforms.ToTensor()
)

# Data loader
train_loader = torch.utils.data.DataLoader(
    dataset = train_dataset,
    batch_size = batch_size,
    shuffle = True
)

test_loader = torch.utils.data.DataLoader(
    dataset = test_dataset,
    batch_size = batch_size,
    shuffle = False
)

# Recurrent neural network (many to one)
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(RNN, self).__init__() # super avoid many times to running the base class
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(
            input_size,
            hidden_size,
            num_layers,
            batch_first = True)# batch_first for parallel computing
        self.fc = nn.Linear(hidden_size, num_classes)
    
    def forward(self, x): # __call__ method to use forward automately
        # Set initial hidden and cell states
        h0 = torch.zeros(self.num_layers, x.size(0),self.hidden_size).to(device) # 
        c0 = torch.zeros(self.num_layers, x.size(0),self.hidden_size).to(device)

        # Forward propagate LSTM
        out,_ = self.lstm(x, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size)

        # Decode the hidden state of the last time step
        out = self.fc(out[:, -1, :])
        return out 

model = RNN(input_size, hidden_size, num_layers, num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr=learning_rate)

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, sequence_length, input_size).to(device) # images size is (100, 28, 28)
        labels = labels.to(device)

        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)

        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# Test the model
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) 

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')

3 程序输出

输出结果如下,精度达到97.77% ,但训练速度明显比线性模型和普通的前馈神经网络要慢得多。

Epoch [1/2], Step [100/600], Loss: 0.6226
Epoch [1/2], Step [200/600], Loss: 0.2450
Epoch [1/2], Step [300/600], Loss: 0.1858
Epoch [1/2], Step [400/600], Loss: 0.1572
Epoch [1/2], Step [500/600], Loss: 0.1511
Epoch [1/2], Step [600/600], Loss: 0.1087
Epoch [2/2], Step [100/600], Loss: 0.1476
Epoch [2/2], Step [200/600], Loss: 0.0866
Epoch [2/2], Step [300/600], Loss: 0.1113
Epoch [2/2], Step [400/600], Loss: 0.0259
Epoch [2/2], Step [500/600], Loss: 0.1402
Epoch [2/2], Step [600/600], Loss: 0.0596
Test Accuracy of the model on the 10000 test images: 97.77 %
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值