cudnn-10.0-linux-x64-v7.4.2.24安装

本文详细介绍了如何在Linux环境下安装cudnn-10.0-linux-x64-v7.4.2.24。首先,将安装包上传并解压,然后将包含头文件的目录和库文件复制到CUDA安装路径下,并赋予相应权限。最后,提供了免费的下载链接供需要的用户使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cudnn 安装

cudnn-10.0-linux-x64-v7.4.2.24 的安装


将安装包上传到机器上,解压拷贝即可

sudo tar -xzvf cudnn-10.0-linux-x64-v7.4.2.24.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

找不到资源的小伙伴可以去我的资源里面下载安装包,免费的。 https://download.csdn.net/download/baidu_35848778/47680107
### 127.0.0.1 0.0.0.0 的区别 #### IP 地址定义与特性 127.0.0.1 是一种特殊的 IPv4 地址,属于回环地址的一部分。这类地址主要用于本机内部通信测试,确保网络协议栈功能正常[^1]。 0.0.0.0 则是一个通配符地址,在不同场景中有不同的含义。在网络编程中,它通常用来表示所有的网络接口,意味着服务愿意接收来自任何网络接口的连接请求[^2]。 #### 使用范围 对于 127.0.0.1 来说,其作用严格限定于本地计算机内,不允许外部设备直接访问。这种局限性使其成为理想的本地调试工具,比如 Web 开发人员可以在 localhost 上启动服务器并进行各种测试而不影响实际生产环境[^3]。 而 0.0.0.0 可以使应用程序监听所有可用的网络接口,从而允许远程主机建立连接。因此,在某些情况下(如云平台部署),设置为 0.0.0.0 能够方便地让外界访问特定的服务端口[^4]。 ### 应用场景举例 - **开发与测试阶段** 当开发者希望在一个封闭环境下验证软件的功能时,可以选择绑定至 127.0.0.1。这样做不仅简化了配置过程,还提高了安全性,因为此时的应用程序仅能响应同一台机器发出的数据包。 ```bash python manage.py runserver 127.0.0.1:8000 ``` - **生产环境中** 对于需要对外开放的服务而言,则应考虑采用 0.0.0.0 进行绑定。这样做的好处是可以使得该服务更容易被发现并与之交互,特别是当涉及到跨网段或多节协作的任务时。 ```bash redis-server --bind 0.0.0.0 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值