数学建模② 含logistic模型

文章介绍了传染病传播的逻辑模型,包括其基本假设和数学表达式,强调了模型在人口数量固定和传染率随感染人数增加减缓的情况下的应用。同时,文章提出了一个鞋店的经济订货批量问题,通过计算得出最优的进货周期和量,以及每日盈利情况。
摘要由CSDN通过智能技术生成

对于传染病传播的建模,逻辑模型(Logistic Model)是一种常见的模型之一。该模型基于以下假设:
1. 总人口数量固定:逻辑模型假设人口总数是固定的,即在短期内没有人口的出生和死亡。
2. 传染速率随感染人口增加减缓:逻辑模型假设传染速率随着感染人口的增加而减缓,即感染人口越多,传染给新人的速率越慢。
逻辑模型的数学表达式如下:
dP/dt = r * P * (1 - P/K)
其中,P表示感染人口数量,t表示时间,r表示传染率,K表示人口容量。
该方程描述了感染人口数量随时间的变化过程。在模型中,当感染人口数量接近人口容量时,传染率会减缓,从而导致感染速度减慢。当感染人口数量接近人口容量的一半时,传染速率最慢。
需要注意的是,逻辑模型是一种简化的模型,仅适用于特定的传染病情况,并且基于上述假设。在实际应用中,传染病的传播往往受到多种因素的影响,例如人口迁移、控制措施的实施等。因此,在建立传染病模型时,需要综合考虑其他因素,并采用更复杂的模型来更准确地描述传染病的传播过程。


 第二份作业

1、一鞋店大约每天卖出鞋 30 双,每双鞋的进价 200 , 售价 250 , 批发一次货的花费为 600元,每双鞋每天的存储费用为 0.1元。问鞋店多少天批发一次货,进货量为多少?鞋店一天盈利多少?

解:日需求量 r=30,每次进货费 c1=600,每天每件的储蓄费用 c2=0.1,根据经济订货批量公式, 最优进货周期

 进货量 Q=rT=600(双). 鞋店应当 20 天批发一次货,进货量为 600 双。每双鞋费用

 每天盈利 30*(250-200-2)=1440 .

 只需要背住公式

 第一步计算总C时利用积分的图像性质;Q是直接由题干所给条件生产速率,销售速率直接计算;解题过程中应该把T0当做未知量,需要将它消除

 解:总利润:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值