线性代数-矩阵及计算

文章探讨了矩阵在几何上的意义,特别是矩阵乘法如何表示向量的线性变换。通过矩阵乘法的计算公式,解释了如何从一个坐标系转换到另一个坐标系,并指出矩阵乘法不仅是数值运算,更体现了坐标变换的规则。矩阵乘法的物理意义在于它描述了如何通过一个矩阵(新的基底)来表示另一个矩阵(原坐标系)下的向量。
摘要由CSDN通过智能技术生成

——矩阵计算公式背后所隐含的几何含义

矩阵可用来更简洁的表达多维信息,像计分表,数据结构中的邻接矩阵表示法等。但在此文中,我们依旧从矩阵在几何意义上的表现和原理去探究它。

正如上面一节向量所说,我们尝试着把矩阵也做个类比,简单且易于理解起见,仍以二维为例:二维矩阵单独的来看,实际上也是可以看作是向量组成的一组矩阵。因此矩阵的加法和数乘规则,可以很容易的从向量的角度,从定义上去理解其意义和计算公式。而矩阵的乘法,其计算公式是如何设计的呢?或者说乘法代表了什么规则。

从公式上看:C = AB = (C)E,其代数值上代表的便是:矩阵A乘矩阵B,得到矩阵C,其值是在标准坐标系下的一个新的坐标值。而坐标值是多少便是计算公式的结果,也是规则的反应。那我们看下这个计算公式:

A:\begin{bmatrix} x1 & y1\\ x2 & y2 \end{bmatrix},B: \begin{bmatrix} {x1}' &y1{}' \\ x2{}' &y2{}' \end{bmatrix},则C: \begin{bmatrix} x1x1{}'+y1x2{}' & x1y1{}' + y1y2{}'\\ x2x1{}'+y2x2{}' & x2y1{}' + y2y2{}' \end{bmatrix}

是的,这里我并没有按照一般书本中的,将矩阵B中的向量组成进行一个转置(使之与矩阵A向量维度相等)。使之确保满足矩阵乘法的条件:只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义 。因为其一,这是两个二维向量,无论是否转置,均可以满足乘法条件。其二,更重要的是,我觉得这会是向量乘法规则的另一种真正意义(后面慢慢解读)。还有其三,不同型矩阵代表了什么意义,不满秩矩阵代表了什么意义,它们之间有是否可以进行运算?(这个将在对整个线性代数进行粗略而又较全面的了解后去重新审视。)

上面我们说了矩阵A乘矩阵B,得到矩阵C,其值是在标准坐标系下的一个新的坐标值。并写出了矩阵乘法的计算公式:A: \begin{bmatrix} x1 & y1\\ x2 & y2 \end{bmatrix},B: \begin{bmatrix} {x1}' &y1{}' \\ x2{}' &y2{}' \end{bmatrix}, 

C = AB = \begin{bmatrix} x1x1{}'+y1x2{}' & x1y1{}' + y1y2{}'\\ x2x1{}'+y2x2{}' & x2y1{}' + y2y2{}' \end{bmatrix}

现在我们拿一个坐标点来看,矩阵C的x1''坐标:

x1'' = x1x1'+y1x2', 若将矩阵A的坐标认为是以矩阵B为基底的坐标表示法,那么矩阵A在标准正交坐标系E下的坐标应该是什么呢,稍加分析就可知道:x1''不就是矩阵A在矩阵B中x坐标的权值和(两个基向量的权值和)吗?其代数值正是: x1x1'+y1x2'(这一点与内积的计算方式是否有着内在的联系)此时对B来说就是将坐标按照A的权值进行线性变换。

与此同时,我们发现了另一种思路:若将矩阵A的坐标认为是以矩阵B为基底的坐标表示法,则对A来说就是改变了基底为B,其坐标值本身是不变的A(BE)。而且从数值表达式上:\begin{bmatrix} x1x1{}'+y1x2{}' & x1y1{}' + y1y2{}'\\ x2x1{}'+y2x2{}' & x2y1{}' + y2y2{}' \end{bmatrix}也可以清楚的看到,C的向量坐标信息就是对B的行坐标进行线性计算,同时也是对A的列坐标进行线性变换。这里我们可以引出矩阵乘法的一个重要的物理意义——向量变换。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值