三维以上的纽结作为质点运行的轨迹,若质点具有场的作用,可表现为不同方向上的量子效应.
在弦理论中,弦当然不是二胡,吉它中的弦,而是能量运行的轨迹,既然是能量高速运行的轨迹,它必是一阶偏微与二阶偏微都是连续的,在此,我们就下面参数方程分析:
x=Sin(i*t)
y=Cos(j*t)
z=Sin(k*t)
适当地选取整数i,j,k,便可生成三维纽结,如取2,3,5:
x=Sin(2*t)
y=Cos(3*t)
z=Sin(5*t)
这是个同构圆圈的轨迹,它没有交叉穿行的.
再取2,3,7:
x=Sin(2*t)
y=Cos(3*t)
z=Sin(7*t)
出现了穿行且不相交的轨迹:
但是,i,j,k的取值,虽然已经是两两互素(互质),也会出现近似相交或真相交的,如取:i=3,j=5,k=7,结果如下:
偶数在其中作参数也无碍,如现在取:i=4,j=5,k=7效果图如下:
这样以来,构造三维纽结的算法就拓展了许多,如:
x=Cos(4*t)
y=Sin(5*t)
z=Cos(7*t)
以及用基本球面以及它的变形也能产生纽结:
int hv1 = hScrollBar1.Value; int hv2 = hScrollBar2.Value; int hv3 = hScrollBar3.Value;
//pt[cnt] = new Vector4(
// (float)(15 * Math.Sin(hv1 * g) + 15 *Math.Cos(hv3 * g)), //X,
// (float)(15 * Math.Cos(hv2 * g) + 15 *Math.Sin(hv3 * g)), //Y,
// (float)(15 * Math.Sin(hv1 * g) + 15 *Math.Cos(hv2 * g)), //Z,
// 1);//W
//pt[cnt] = new Vector4(
// (float)(15 * Math.Sin(hv1 * g) + 15 * Math.Cos(hv1 * g)), //X,
// (float)(15 * Math.Cos(hv2 * g) + 15 * Math.Sin(hv1 * g)), //Y,
// (float)(15 * Math.Sin(hv3 * g) + 15 * Math.Cos(hv3 * g)), //Z,
// 1);//W
//pt[cnt] = new Vector4(
// (float)(15 * Math.Sin(hv1 * g) * Math.Cos(hv1 * g)), //X,
// (float)(15 * Math.Cos(hv2 * g) * Math.Sin(hv2 * g)), //Y,
// (float)(15 * Math.Sin(hv3 * g) * Math.Cos(hv3 * g)), //Z,
// 1);//W
这些就不帖图了.
一般地,如用简单的三角公式,就可设计出无数种纽结了(其中I,J,K取整数,t是时间参数,u0,v0,w0是初相位):
记得2014年,用了老外的公式也整了个,还帖上了图:
当一个,或N个带能量的粒子沿着这轨道冲着你来时,你就感受到不连续的能量脉冲,在单晶体中分子原子排列有序的,这种脉冲效应会十分突出.
量子[能量不连续]的概念,就是这原因,现在是要我们研究不同的基本粒子沿着什么样的轨道的问题了,即各参数如何测定.
按定义,有相交就不算纽结,然而,在道路,机械或建筑等设计中,有交点却是十分有用的,因为这样的结构更加牢固.
原创:作者微信:13058943056, 于2020-03-07