给你一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长有效(格式正确且连续)括号子串的长度。
示例 1:
输入:s = “(()”
输出:2
解释:最长有效括号子串是 “()”
示例 2:
输入:s = “)()())”
输出:4
解释:最长有效括号子串是 “()()”
示例 3:
输入:s = “”
输出:0
这种一看就知道用动态规划法,那么困难之处在于状态转移方程。说一下思路,dp 数组表示到 i 为止,最长的有效括号。
那么就可以直接写状态转移方程:dp[i] = 2 + dp[i - 1] + dp[left - 1]; 匹配的字符 + i 前一个字符的最大匹配数 + 最开始前匹配的字符数。注意边界条件。
class Solution {
public int longestValidParentheses(String s) {
int len = s.length();
int[] dp = new int[len];
Arrays.fill(dp, 0);
int ret = 0;
// i 可以从1开始遍历
for (int i = 1; i < len; i++) {
char ch = s.charAt(i);
if (ch == ')') {
// 找到右括号对应可能左括号下标
int left = i - dp[i - 1] - 1;
// 对越界情况做个判断
if (left < 0) {
continue;
}
if (s.charAt(left) == '(') { // 匹配
dp[i] = left - 1 < 0 ? 2 + dp[i - 1] : 2 + dp[i - 1] + dp[left - 1];
}
// 没有括号与之匹配就赋0 不管了
}
// '(' 直接就是 0
ret = Math.max(ret, dp[i]);
}
return ret;
}
}