深度学习GPU显卡的浮点计算性能指标分析

本文分析了GPU在深度学习中的计算能力,重点讨论了计算峰值、显存大小、CUDA核心数和主频等关键指标。以GTX680为例,解释了如何计算GPU的单精度和双精度计算峰值,并介绍了不同FLOPS级别的含义。在Tesla P100显卡中,支持在FP32内核进行双倍F16精度运算,提升了计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPU的计算能力的衡量指标

  1. 显存大小
  2. CUDA核心数
  3. 计算主频

描述GPU计算能力的指标:

  1. 计算峰值
    2 . 存储器带宽

其中最为重要的就是GPU的计算峰值,这个在我们进行边缘计算的时候,更加重要。

GPU设备的单精度计算能力的理论峰值计算公式:

单精度计算能力的峰值 = 单核单周期计算次数 × 处理核个数 × 主频

以GTX680为例, 单核一个时钟周期单精度计算次数为两次,处理核个数 为1536, 主频为1006MHZ,那他的计算能力的峰值P :

P = 1536 * 1006 * 2 = 3.09TFLOPS

这里1MHZ = 1000000HZ, 1T为1兆,也就是说,GTX680每秒可以进行超过3兆次的单精度运算。

各种FLOPS的含义,FLOPS是每秒所执行的浮点运算次数,也就是GPU计算的基本单位:

MFLOPS (megaFLOPS):每秒一百万 (=10^6) 次的浮点运算

GFLOPS (gigaFLOPS) :每秒十亿 (=10^9) 次的浮点运算

TFLOPS (teraFLOPS) :每秒一万亿 (=10^12) 次的浮点运算

PFLOPS (petaFLOPS) :每秒一千万亿 (=10^15) 次的浮点运算

GPU计算浮点数的理论峰值 = GPU芯片数量*GPU Boost主频*核心数量*单个时钟周期内能处理的浮点计算次数

同时对于Tesla系列的显卡,支持双精度的内核,进行运算,计算公

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千与编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值