转载:https://www.jianshu.com/p/03fd1e22bcfe
一、简介
(1)Anaconda
Anaconda3下载地址:https://www.anaconda.com/distribution/#download-section
Anaconda是目前最流行的数据科学平台以及现代机器学习的基础。同时Anaconda 也是一个Python的发行版,专注于人工智能,天然适合科学计算,数据分析和机器学习,其包管理器是conda。
Anaconda distribution 是世界上最流行的Python/R数据科学平台,是在一台机器上开发、测试、训练的工业标准。Anaconda distribution能够使每个数据科学家快速的下载1500+Python/R数据科学包,能够使用Conda管理库和依赖项以及环境,能够用scikitlearn/Tensorflow/Theano开发和训练机器学习和深度学习模型,能够用Dask/Numpy/Pandas/Numba分析可伸缩性和性能的数据,能够用Matplotlib/Bokeh/Datashader/Holoviews可视化结果。
(2) Pytorch
Pytorch官网
Pythorch是一个开源的机器学习框架,它加速了从原型到产品的过程。
(3)Pycharm
Pycharm下载地址
二、Anaconda
(1)安装Anaconda
下载Anaconda3后运行出现下图:
点击“next”,进入下一步:
点击“I Agree”,进入下一步选择安装路径:
点击“Next”,进入下一步高级选项然后勾选第二项:
点击“Install”,进入安装界面:
点击“Next”,进入下面提示界面:
点击“Next”,进入下一步点击“Finish”即可。
(2)验证Anaconda是否安装成功
在开始菜单找到Anaconda Prompt输入:“conda list”出现下图即安装成功。
(3)创建Python环境
在Anaconda Prompt中输入:“conda create -n pytorch python=3.7”。如下图:
-n:即name表示环境名称,本次命名为pytorch。
python:选择Python的版本号,本次为3.7版本。
按回车后出现下图:
输入“y”按回车,出现下图说明安装成功。
激活创建的环境,输入:“conda activate pytorch”回车。如下图:
三、Pytorch
(1)复制安装命令
进入Pytorch官网,进入下面界面:
Pytorch Build:选择稳定版本
系统选择:根据自己电脑系统选择
Package:选择Conda安装
语言选择:Python3.7(根据自己实际情况选择)
Cuda:根据显卡是否为Nvidia显卡以及是否支持cuda加速及显卡驱动的版本选择,我的笔记本不支持cuda所以选择“None”
Run this Command:复制该条目的内容
(2)在Anaconda Prompt执行安装命令
在Anaconda Prompt中选择创建的python环境,然后粘贴上一步复制的内容。如下图:
回车后出现下图:
输入“y”,按回车,出现下图:
上图显示有一个包没有下载完整,重复上一步的粘贴命令,直到全部包安装成功。如下图:
(3)验证安装是否成功
在Anaconda Prompt中选择创建的python环境,输入:“python”,然后回车。接着输入:“torch”,然后回车。最后输入:“torch.cuda.is_available()”出现下图表明安装成功。
(4) 激活环境
activate pytorch
四、Pycharm
(1)安装Pycharm
下载Pycharm运行出现下面界面:
点击“Next”,进入下一步选择安装目录:
点击“next”,进入下一步勾选最后一个选项
点击“Next”,进入下一步
点击“Install”,完成安装
(2)配置Pycharm环境
首次打开Pycharm,需要选择配置,选择第二项然后点击“OK”,如下图:
勾选对话框,点击“Continue”,见下图:
选择界面风格,根据个人喜好选择,见下图:
选择“Skip Remaining and Set Defaults”跳过其余的设置,见下图:
点击“Creaate New Project”创建新工程,见下图:
进入创建工程选项。
Location:选择存放工程的目录
勾选现有的解释器选项,在解释器右边点击进入下图。
选择Conda Environment,在Interpreter中选择在Anaconda创建的环境中的Python.exe解释器见下图,点击“OK”。
回到下图然后点击“Create”:
进入到Pycharm主程序界面,如下图:
在左下角点击“Python Console”进入Python控制台,输入“ import torch ”,没有错误输出表明配置成功。如下图:
-----------------------------分割线---------------------------------------------------------