二项展开式及其在极限计算上的应用

二项展开式
( x + y ) n = ( n 0 ) x n y 0 + ( n 1 ) x n − 1 y 1 + ( n 2 ) x n − 2 y 2 + ⋯ + ( n n − 1 ) x 1 y n − 1 + ( n n ) x 0 y n (x+y)^{n}=\left(\begin{array}{c} {n} \\ {0} \end{array}\right) x^{n} y^{0}+\left(\begin{array}{c} {n} \\ {1} \end{array}\right) x^{n-1} y^{1}+\left(\begin{array}{c} {n} \\ {2} \end{array}\right) x^{n-2} y^{2}+\cdots+\left(\begin{array}{c} {n} \\ {n-1} \end{array}\right) x^{1} y^{n-1}+\left(\begin{array}{c} {n} \\ {n} \end{array}\right) x^{0} y^{n} (x+y)n=(n0)xny0+(n1)xn1y1+(n2)xn2y2++(nn1)x1yn1+(nn)x0yn

  1. 证明数列 { n 5 2 n } \left\{\frac{n^{5}}{2^{n}}\right\} {2nn5}收敛于0.

证明:利用 2 n = ( 1 + 1 ) n = 1 + ( n 1 ) + ( n 2 ) + ⋯ + ( n n ) 2^{n}=(1+1)^{n}=1+\left(\begin{array}{l}{n} \\ {1}\end{array}\right)+\left(\begin{array}{l}{n} \\ {2}\end{array}\right)+\cdots+\left(\begin{array}{l}{n} \\ {n}\end{array}\right) 2n=(1+1)n=1+(n1)+(n2)++(nn),在 n > 6 n>6 n>6时有 2 n > ( n 6 ) 2^{n}>\left(\begin{array}{l}{n} \\ {6}\end{array}\right) 2n>(n6),因此可以放大如下:
n 5 2 n < n 5 6 ! n ( n − 1 ) ( n − 2 ) ( n − 3 ) ( n − 4 ) ( n − 5 ) < n 4 6 ! ( n − 5 ) 5 \frac{n^{5}}{2^{n}}<\frac{n^{5} 6 !}{n(n-1)(n-2)(n-3)(n-4)(n-5)}<\frac{n^{4} 6 !}{(n-5)^{5}} 2nn5<n(n1)(n2)(n3)(n4)(n5)n56!<(n5)5n46!
得证。

  1. 证明数列 { n n } \{\sqrt[n]{n}\} {nn }的极限是1。

证明:在 n ⩾ 2 n \geqslant 2 n2时,我们有
1 ⩽ n n = ( n ⋅ n ⋅ 1 ⋅ 1 ⋯ 1 ⏟ n − 2 个 1 ) 1 n < 2 n + n − 2 n < 1 + 2 n 1 \leqslant \sqrt[n]{n}=(\sqrt{n} \cdot \sqrt{n} \cdot \underbrace{1 \cdot 1 \cdots 1}_{n-2个1})^{\frac{1}{n}}<\frac{2 \sqrt{n}+n-2}{n}<1+\frac{2}{\sqrt{n}} 1nn =(n n n21 111)n1<n2n +n2<1+n 2
因此得到估计
0 ⩽ n n − 1 < 2 n 0 \leqslant \sqrt[n]{n}-1<\frac{2}{\sqrt{n}} 0nn 1<n 2
对于给定的 ε > 0 \varepsilon>0 ε>0,取 N = [ 4 / ε 2 ] N=\left[4 / \varepsilon^{2}\right] N=[4/ε2]即可。

  1. ∣ q ∣ < 1 |q|<1 q<1,则 lim ⁡ n → ∞ q n = 0 \lim \limits_{n \rightarrow \infty} q^{n}=0 nlimqn=0

证明:当 0 < ∣ q ∣ < 1 0<|q|<1 0<q<1时, 1 ∣ q ∣ > 1 \frac{1}{|q|}>1 q1>1。记 α = 1 ∣ q ∣ − 1 > 0 \alpha=\frac{1}{|q|}-1>0 α=q11>0,任取 ε > 0 \varepsilon>0 ε>0,取正整数 N > 1 α ε N>\frac{1}{\alpha \varepsilon} N>αε1,当 n > N n>N n>N
∣ q n − 0 ∣ = ∣ q ∣ n = 1 ( 1 + α ) n < 1 n α < ε \left|q^{n}-0\right|=|q|^{n}=\frac{1}{(1+\alpha)^{n}}<\frac{1}{n \alpha}<\varepsilon qn0=qn=(1+α)n1<nα1<ε
其中,我们用到不等式:
( 1 + α ) n = 1 + n α + 1 2 n ( n − 1 ) α 2 + ⋯ + α n > n α (1+\alpha)^{n}=1+n \alpha+\frac{1}{2} n(n-1) \alpha^{2}+\cdots+\alpha^{n}>n \alpha (1+α)n=1+nα+21n(n1)α2++αn>nα

  1. a > 0 a>0 a>0,证明 lim ⁡ n → ∞ a n = 1 \lim \limits_{n \rightarrow \infty} \sqrt[n]{a}=1 nlimna =1

证明:当 a ⩾ 1 a \geqslant 1 a1,记 a n = 1 + α n , α n ⩾ 0 \sqrt[n]{a}=1+\alpha_{n}, \alpha_{n} \geqslant 0 na =1+αn,αn0,则有
a = ( 1 + α n ) n = 1 + n α n + ⋯ + α n n > n α n a=\left(1+\alpha_{n}\right)^{n}=1+n \alpha_{n}+\cdots+\alpha_{n}^{n}>n \alpha_{n} a=(1+αn)n=1+nαn++αnn>nαn
因此
1 ⩽ a n = 1 + α n < 1 + a n 1 \leqslant \sqrt[n]{a}=1+\alpha_{n}<1+\frac{a}{n} 1na =1+αn<1+na
0 < a < 1 0<a<1 0<a<1时,根据上面的估计,有
1 < 1 a n < 1 + 1 n a 1<\sqrt[n]{\frac{1}{a}}<1+\frac{1}{n a} 1<na1 <1+na1

1 − 1 1 + n a < a n < 1 1-\frac{1}{1+n a}<\sqrt[n]{a}<1 11+na1<na <1

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值