线性代数
文章平均质量分 75
考研线性代数
白茶.清欢
白茶清欢无别事,我在等风也等你。
展开
-
线性代数:延伸组和缩短组
延伸组和缩短组如果向量组线性无关,那么把每个向量填上mmm个分量(所添分量的位置对于每个向量都一样)得到的延伸组也线性无关证明:设α1,⋯ ,αs\boldsymbol{\alpha}_{1}, \cdots, \boldsymbol{\alpha}_{s}α1,⋯,αs的一个延伸组为α~1,⋯ ,α~s\tilde{\boldsymbol{\alpha}}_{1}, \cdots, \tilde{\boldsymbol{\alpha}}_{s}α~1,⋯,α~s,则从k1α~1+⋯+ksa~原创 2021-05-06 14:36:09 · 17811 阅读 · 4 评论 -
向量组相关定理及其推论
1.相关定理及推论命题一:设向量组α1,⋯ ,αs\alpha_{1}, \cdots, \alpha_{s}α1,⋯,αs线性无关,则向量β\betaβ可以由α1,⋯ ,αs\alpha_{1}, \cdots, \alpha_{s}α1,⋯,αs线性表示的充分必要条件是α1,⋯ ,αs,β\alpha_{1}, \cdots, \alpha_{s},\betaα1,⋯,αs,β线性相关。证明:必要性是显然的,下面证明充分性:设α1,⋯ ,αs,β\alpha_{1}, \cdots,原创 2021-05-06 14:34:49 · 3427 阅读 · 1 评论 -
矩阵秩的不等式证明
矩阵秩的不等式及其证明(AB)T=BTAT(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}(AB)T=BTAT证明:设A=(aij)m×s,B=(bij)s×nA=\left(a_{i j}\right)_{m \times s}, B=\left(b_{i j}\right)_{s \times n}A=(aij)m×s,B=(bij)s×n,记AB=C=(cij)m×n,BTAT=D=(dij)n×mA B=C=\left(c_{i j}\原创 2021-05-06 14:30:55 · 4327 阅读 · 2 评论 -
行列式计算方法总结
行列式计算方法1.箭型行列式最常见最常用的行列式,特征很好辨识,必须掌握,请看下例:eg:Dn=∣x111...11x21x3......1...xn∣(空白处都为0)eg:D_n= \left|\begin{array}{cccc} x_1&1&1 &... &1\\ 1&x_2&&&\\ 1&&x_3\\ ...&&&...\\ 1&&&...&x_n \en原创 2021-05-06 14:24:05 · 10189 阅读 · 2 评论 -
常见矩阵性质
常见矩阵性质1. 转置矩阵(AT)T=A\left(\boldsymbol{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\boldsymbol{A}(AT)T=A(AB)T=BTAT(\boldsymbol{A B})^{\mathrm{T}}=\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}}(AB)T=BTAT设A=(aij)m×s,B=(bij)s×n\boldsymbol{A}=\left(a原创 2021-05-06 14:27:50 · 3738 阅读 · 0 评论