考研数学:罗尔定理的推论

考研数学:罗尔定理的推论

推论1:设函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续可导
(1)若 f ( n ) ( x ) f^{(n)}(x) f(n)(x)存在且在开区间 ( a , b ) (a,b) (a,b)内有 k k k个零点(不计重数),则 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上最多有 n + k n+k n+k个零点(不计重数)。
(2)若 f ( n ) ( x ) f^{(n)}(x) f(n)(x)存在且在开区间 ( a , b ) (a,b) (a,b)内有 k k k个零点(计重数),则 f ( x ) f(x) f(x)在开区间 ( a , b ) (a,b) (a,b)上最多有 n + k n+k n+k个零点(计重数)。
推论2:设函数 f ( x ) f(x) f(x)是定义在闭区间 [ a , b ] [a,b] [a,b]上的函数, f ( x ) f(x) f(x)在开区间 ( a , b ) (a,b) (a,b)内有 s s s个间断点,且 f ( x ) f(x) f(x)在非间断点处连续可导
(1)若 f ( n ) ( x ) f^{(n)}(x) f(n)(x)存在且在开区间 ( a , b ) (a,b) (a,b)内有 k k k个零点(不计重数),则 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上除间断点外最多有 ( s + 1 ) n + k (s+1)n+k (s+1)n+k个零点(不计重数)。
(1)若 f ( n ) ( x ) f^{(n)}(x) f(n)(x)存在且在开区间 ( a , b ) (a,b) (a,b)内有 k k k个零点(计重数),则 f ( x ) f(x) f(x)在开区间 ( a , b ) (a,b) (a,b)上除间断点外最多有 ( s + 1 ) n + k (s+1)n+k (s+1)n+k个零点(计重数)。
证明见论文《罗尔定理的推广及应用》
例1:证明方程 2 x − x 2 = 1 2^{x}-x^{2}=1 2xx2=1有且仅有3个实根
证明:令 f ( x ) = 2 x − x 2 − 1 f(x)=2^{x}-x^{2}-1 f(x)=2xx21,则 f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)内连续,由于 f ′ ′ ( x ) = 2 x ( ln ⁡ 2 ) 3 ≠ 0 f^{\prime \prime}(x)=2^{x}(\ln 2)^{3} \neq 0 f(x)=2x(ln2)3=0,即 f ′ ′ ′ ( x ) = 2 x ( ln ⁡ 2 ) 3 ≠ 0 f^{\prime \prime \prime}(x)=2^{x}(\ln 2)^{3} \neq 0 f(x)=2x(ln2)3=0无实根(至多个实根),则由罗尔定理推论, f ( x ) = 0 f(x)=0 f(x)=0至多3个实根,又
f ( 0 ) = 0 , f ( 1 ) = 0 , f ( 2 ) = − 1 < 0 , f ( 5 ) = 6 > 0 f(0)=0, \quad f(1)=0, \quad f(2)=-1<0, \quad f(5)=6>0 f(0)=0,f(1)=0,f(2)=1<0,f(5)=6>0
故由零点定理知 f ( x ) = 0 f(x)=0 f(x)=0至少3个实根,综上所述,方程 2 x − x 2 = 1 2^{x}-x^{2}=1 2xx2=1有且仅有3个实根。

  • 4
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值