考研
文章平均质量分 76
白茶.清欢
白茶清欢无别事,我在等风也等你。
展开
-
考研英语作文笔记(刘晓燕强化班)
写作句型简单句1. 被动句被动:只要在作文中有:我们……、人们……、大家……、许多人……、越来越多的人……等人或人称代词做主语的时候,都可以考虑写成被动我们应该孝敬父母:Parents should be respected by usparents 替换superiors 父母,长辈,上司;比……优秀the elderly 长辈shouldought to 应该be supposed to 应该做某事be obliged to 有责任,有义务(注意这个是有法律上的义务原创 2021-05-10 11:53:27 · 9868 阅读 · 4 评论 -
考研数学:算子法
于二阶常系数非齐次线性微分方程:y′′+py′+qy=f(x)y^{\prime \prime}+p y^{\prime}+q y=f(x)y′′+py′+qy=f(x)定义算子P(D)=D2+pD+qP(D)=D^{2}+p D+qP(D)=D2+pD+q其中微分算子DDD满足Dy=y′,D2y=y′′D y=y^{\prime}, D^{2} y=y^{\prime \prime}Dy=y′,D2y=y′′,则二阶常系数非齐次线性微分方程等价于P(D)y=f(x)P(D) y=f(x原创 2021-05-09 17:34:36 · 2001 阅读 · 0 评论 -
极坐标计算重积分交换积分次序
1.极坐标计算重积分交换积分次序2.1.类直角坐标法将极坐标(θ,ρ)(\theta, \rho)(θ,ρ)看做类似直角坐标(x,y)(x,y)(x,y)的情况,将θ\thetaθ看做横坐标,讲ρ\rhoρ看做纵轴,画出(θ,ρ)(\theta, \rho)(θ,ρ)的直角坐标图和积分区域图形,然后像直角坐标下交换积分次序那样交换θ,ρ\theta, \rhoθ,ρ的积分次序例一:在极坐标下交换积分次序:I=∫−π4π2dθ∫02cosθf(rcosθ,rsinθ)rdrI=\int_{-\fr原创 2021-05-09 17:33:07 · 9569 阅读 · 0 评论 -
隐函数存在定理
隐函数存在定理例题:1.设有二元函数xy−zlny+z2=1x y-z \ln y+z^{2}=1xy−zlny+z2=1,根据隐函数存在定理,存在点(1,1,0)(1,1,0)(1,1,0)的一个邻域,在此邻域内该方程()A.只能确定一个具有连续偏导数的隐函数z=z(x,y)z=z(x, y)z=z(x,y)B.可确定两个具有连续偏导数的隐函数y=y(x,z)y=y(x, z)y=y(x,z)和z=z(x,y)z=z(x, y)z=z(x,y)C.可确定两个具有连续偏导数的隐函数x=x(y,z原创 2021-05-09 17:30:27 · 27802 阅读 · 0 评论 -
二重积分对称性证明
1.二重积分对称性证明1.1.积分区域D关于坐标轴对称定理:如果积分区域D关于xxx轴对称,f(x,y)f(x,y)f(x,y)为yyy的奇偶函数,则二重积分∬Df(x,y)dxdy={0,f(x,−y)=−f(x,y)2∬D1f(x,y)dxdy,f(x,−y)=f(x,y)\iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll}0 & , f(x,-y)=-f(x, y) \\2 \iint_{D_{1}} f(x, y) d x d y,原创 2021-05-09 16:38:34 · 7899 阅读 · 2 评论 -
证明多元函数极限不存在的一个解法
对于多元函数f(x)f(x)f(x)来说,证明其在某一点(x0,y0)(x_0,y_0)(x0,y0)处极限不存在的方法就是找到两条不同的趋于(x0,y0)(x_0,y_0)(x0,y0)的路径,使得f(x,y)f(x,y)f(x,y)在这两条路径上趋于不同的值。对于二元函数f(x,y)f(x,y)f(x,y)来说,(x,y)(x,y)(x,y)沿任意路径趋于(x0,y0)(x_0,y_0)(x0,y0)时二元函数f(x,y)f(x,y)f(x,y)趋于同一个值A,则重极限lim(x,y)→原创 2021-05-09 16:34:05 · 12060 阅读 · 5 评论 -
多元函数极限求法(二元函数)
夹逼准则例一:求极限limx→0y→0sin(x2y+y4)x2+y2\lim \limits_{x \rightarrow 0 \atop y \rightarrow 0} \frac{\sin \left(x^{2} y+y^{4}\right)}{x^{2}+y^{2}}y→0x→0limx2+y2sin(x2y+y4)解析:因为∣sinx∣≤∣x∣|\sin x| \leq|x|∣sinx∣≤∣x∣,因为有0≤∣sin(x2y+y4)x2+y2∣≤∣x2y+y4x2+y2∣..原创 2021-05-09 16:32:49 · 3693 阅读 · 0 评论 -
考研数学:有理函数中多项式分解定理
设R(X)=P(X)/Q(X)R(X)=P(X)/Q(X)R(X)=P(X)/Q(X)是一个真分式,其中分母Q(X)Q(X)Q(X)有分解式:Q(x)=(x−a)a⋯(x−b)β(x2+px+q)μ⋯(x2+rx+s)vQ(x)=(x-a)^{a} \cdots(x-b)^{\beta}\left(x^{2}+p x+q\right)^{\mu} \cdots\left(x^{2}+r x+s\right)^{v}Q(x)=(x−a)a⋯(x−b)β(x2+px+q)μ⋯(x2+rx+s)v,其中a,⋯原创 2021-05-09 16:30:53 · 2561 阅读 · 0 评论 -
双曲函数在积分换元中的应用
常见的双曲函数为:cosht=12(et+e−t),sinht=12(et−e−t)\cosh t=\frac{1}{2}\left(e^{t}+e^{-t}\right), \quad \sinh t=\frac{1}{2}\left(e^{t}-e^{-t}\right)cosht=21(et+e−t),sinht=21(et−e−t)他们的性质如下:(1) (cosht)′=sinht,(sinht)′=cosht(\cosh t)^{\prime}=\sinh t,(\si原创 2021-05-09 16:29:49 · 2829 阅读 · 0 评论 -
三角函数积分的换元法
对于三角函数有理式的积分∫R(cosx,sinx)dx\int R(\cos x, \sin x) d x∫R(cosx,sinx)dx。可以利用万能公式进行计算,但是也可以采用其它替换方法如果R(cosx,−sinx)=−R(cosx,sinx)R(\cos x, -\sin x)=-R(\cos x, \sin x)R(cosx,−sinx)=−R(cosx,sinx)则用:t=cosxt=\cos xt=cosx 进行替换。如果R(−cosx,sinx)=−R(cosx,原创 2021-05-09 16:28:45 · 8990 阅读 · 0 评论 -
原函数存在性定理
1.1.原函数存在性定理(1)连续函数f(x)f(x)f(x)必有原函数(2)含有第一类间断点,无穷间断点的函数f(x)在包含该间断点的区间内必没有原函数连续函数一定存在原函数,反之是不对的有第一类间断点的函数一定不存在原函数,但有第二类间断点的函数可能有原函数,如:F(x)={x2sin1x,x≠00,x=0F(x)=\left\{\begin{array}{cc}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array原创 2021-05-09 16:26:49 · 47925 阅读 · 2 评论 -
含有两个或两个以上导数的中值问题
结论中若只含有f′(ξ),f′(η)f^{\prime}(\xi), f^{\prime}(\eta)f′(ξ),f′(η),此时先找出函数f(x)f(x)f(x)的三个点,两次使用拉格朗日中值定理即可。例题一:设f(x)∈C[0,1]f(x) \in C[0,1]f(x)∈C[0,1],在(0,1)(0,1)(0,1)内可导,f(0)=0,f(1)=1f(0)=0, f(1)=1f(0)=0,f(1)=1,且f(x)f(x)f(x)在[0,1][0,1][0,1]上严格递增,证明:存在ξi∈(0,..原创 2021-05-08 12:58:20 · 606 阅读 · 0 评论 -
考研数学:罗尔定理的推论
考研数学:罗尔定理的推论推论1:设函数f(x)f(x)f(x)在闭区间[a,b][a,b][a,b]上连续可导(1)若f(n)(x)f^{(n)}(x)f(n)(x)存在且在开区间(a,b)(a,b)(a,b)内有kkk个零点(不计重数),则f(x)f(x)f(x)在闭区间[a,b][a,b][a,b]上最多有n+kn+kn+k个零点(不计重数)。(2)若f(n)(x)f^{(n)}(x)f(n)(x)存在且在开区间(a,b)(a,b)(a,b)内有kkk个零点(计重数),则f(x)f(x)f(x)在原创 2021-05-08 12:54:58 · 18628 阅读 · 0 评论 -
中值定理中辅助函数的构造方法
中值定理中辅助函数的构造方法中值定理是研究某个函数导数的中值特性,所以很自然我们有必要了解其原来的函数,这既是解微分方程最原始的思想,对于这样的微分方程的题目,为了构造相应的辅助函数F(x)F(x)F(x),我们的做法如下:(1)若结论为φ(f′(ξ),f(ξ),ξ,c1)=0\varphi\left(f^{\prime}(\xi), f(\xi), \xi, c_{1}\right)=0φ(f′(ξ),f(ξ),ξ,c1)=0的形式(c1c_1c1为常数),可将ξ\xiξ换为xxx,f(x)f(x原创 2021-05-08 12:53:58 · 10810 阅读 · 1 评论 -
考研数学:达步定理
达步定理如果fff在[a,b][a,b][a,b]上可导,那么:(1) 导函数f′f^{\prime}f′可以取到f′(a)f^{\prime}(a)f′(a)与f′(b)f^{\prime}(b)f′(b)之间的一切值。(2) f′f^{\prime}f′无第一类间断点。证明:先证明:如果f′(a)f′(b)<0f^{\prime}(a) f^{\prime}(b)<0f′(a)f′(b)<0,则必有ξ∈(a,b)\xi \in(a, b)ξ∈(a,b),使得f′(ξ)=0f^{原创 2021-05-08 12:35:33 · 546 阅读 · 0 评论 -
考研数学:关于拐点问题的总结
曲线y=(x−1)(x−2)2(x−3)3(x−4)4y=(x-1)(x-2)^{2}(x-3)^{3}(x-4)^{4}y=(x−1)(x−2)2(x−3)3(x−4)4的一个拐点是()A.(1,0) B.(2,0) C.(3,0) D.(4,0)解析:此题选C,设g(x)=(x−1)(x−2)2(x−4)4g(x)=(x-1)(x-2)^{2}(x-4)^{4}g(x)=(x−1)(x−2)2(x−4)4,则y=(x−3)3g(x)y=(x-3)^{3} g(原创 2021-05-08 12:25:09 · 1869 阅读 · 0 评论 -
考研数学:不可导点也有可能是极值
已知函数f(x)={x2x,x>0xex+1,x⩽0f(x)=\left\{\begin{array}{ll}{x^{2 x},} & {x>0} \\ {x e^{x}+1,} & {x \leqslant 0}\end{array}\right.f(x)={x2x,xex+1,x>0x⩽0,求f′(x)f^{\prime}(x)f′(x),并求f(x)f(x)f(x)的极值。解析:当x>0x>0x>0时,我们有:f′(x)=(e2lnx)′=原创 2021-05-08 12:24:30 · 3489 阅读 · 0 评论 -
函数的右导数与导函数的右极限的关系
函数的右导数与导函数的右极限的关系用f+′(x0)f^{\prime}_+\left(x_{0}\right)f+′(x0)表示函数f(x)f(x)f(x)在点x0x_0x0处的右导数,即f+′(x0)=limx→x0+f(x)−f(x0)x−x0f^{\prime}_+\left(x_{0}\right)=\lim \limits_{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}f+′(x0)=x→x0+l原创 2021-05-08 12:23:00 · 6473 阅读 · 6 评论 -
考研数学:常见的初等函数求导公式以及其对应的积分公式
(xu)′=μxk−1∫μxn−1dx=xμ+c\left(x^{u}\right)^{\prime}=\mu x^{k-1} \quad \quad \int \mu x^{n-1} \mathrm{d} x=x^{\mu}+c(xu)′=μxk−1∫μxn−1dx=xμ+c(xmp)′=m−ppxmp∫mpxm−ppdx=xmp=xmp+c(\sqrt[p]{x^{m}})^{\prime}=\frac{m-p}{p} x^{\frac{m}{p}} \quad \int \frac{m}{p}原创 2021-05-08 12:20:11 · 5107 阅读 · 1 评论 -
考研数学:常见的的泰勒公式
ex=1+x1!+x22!+⋯+xnn!+O(xn)sinx=x−x33!+x55!+⋯+(−1)m−1x2m−1(2m−1)!+O(x2m)cosx=1−x22!+x44!+⋯+(−1)mx2m(2m)!+O(x2m+1)(1+x)m=1+mx+m(m−1)2!x2+⋯+m(m−1)⋯(m−n+1)1∗2∗⋯n+O(x(n))ln(1+x)=x−x22+x33+⋯+(−1)n−1xnn+O(xn)arctanx=x−x33+x55−⋯+(−1)m−1x2m−12m−1+O(x2m)tanx=x+原创 2021-05-08 12:19:11 · 8649 阅读 · 2 评论 -
考研数学:常见的等价无穷小替换
sinx∼x\sin{\it x}\sim{\it x}sinx∼xarcsinx∼x\arcsin{\it x}\sim{\it x}arcsinx∼xtanx∼x\tan{\it x}\sim{\it x}tanx∼xarctanx∼x\arctan{\it x}\sim{\it x}arctanx∼xln(1+x)∼x\ln(1+x)\sim{x}ln(1+x)∼xex∼xe^x\sim{x}ex∼x1−cosx∼x221-\cos{x}\sim\frac{{\it x^2}.原创 2021-05-08 12:18:29 · 5939 阅读 · 2 评论 -
考研数学常见的函数图像
y=sin1xy=\sin \frac{1}{x}y=sinx1y=sinxxy=\frac{\sin x}{x}y=xsinxy=xsin1xy=x\sin {\frac{1}{x}}y=xsinx1y=arcsinxy=arcsin xy=arcsinxy=arccosxy=arccos xy=arccosxy=cotxy=cot xy=cotxy=tanxy=tan xy=tanxy=arccotxy=arccot xy=arcc..原创 2021-05-07 12:34:12 · 9966 阅读 · 2 评论 -
复合函数的间断点问题总结
总结:设函数y=g(x),y0=g(x0),z=f(y)y=g(x),\quad y_{0}=g\left(x_{0}\right),\quad z=f(y)y=g(x),y0=g(x0),z=f(y)以及邻域U(x0)⊂Dg,U(y0)⊂DfU\left(x_{0}\right) \subset D_{g}, \quad U\left(y_{0}\right) \subset D_{f}U(x0)⊂Dg,U(y0)⊂Df,则如果满足(i)g(x)g(x)g(x)在x0x_0x0点连续,(ii原创 2021-05-07 12:25:27 · 3230 阅读 · 2 评论 -
取整函数的极限问题
求I=limx→0x[10x]I=\lim \limits_{x \rightarrow 0}x\left[\frac{10}{x}\right]I=x→0limx[x10],其中[][][]为取整符号解析:根据x−1<[x]⩽xx-1<[x] \leqslant xx−1<[x]⩽x,有10x−1<[10x]⩽10x\frac{10}{x}-1<\left[\frac{10}{x}\right] \leqslant \frac{10}{x}x10−1<.原创 2021-05-07 12:23:54 · 6525 阅读 · 1 评论 -
定积分求n项和极限的三个题目
limn→∞(sinπnn+1+sin2πnn+12+⋯+sinnπnn+1n)\lim\limits _{n \rightarrow \infty}\left(\frac{\sin \frac{\pi}{n}}{n+1}+\frac{\sin \frac{2 \pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin \frac{n \pi}{n}}{n+\frac{1}{n}}\right)n→∞lim(n+1sinnπ+n+21sinn2π+⋯+n+n1.原创 2021-05-07 12:22:29 · 1142 阅读 · 0 评论 -
一类和式极限计算公式的导出
题1:求极限limn→∞n(π4−An),An=nn2+1+nn2+2+⋯+nn2+n\lim \limits_{n \rightarrow \infty} n\left(\frac{\pi}{4}-A_{n}\right), A_{n}=\frac{n}{n^{2}+1}+\frac{n}{n^{2}+2}+\cdots+\frac{n}{n^{2}+n}n→∞limn(4π−An),An=n2+1n+n2+2n+⋯+n2+nn题2:求极限limn→∞n2(1−Bn)\lim \lim原创 2021-05-07 12:20:44 · 846 阅读 · 1 评论 -
迭代数列的极限问题
迭代数列的极限问题结论:设xn{x_n}xn满足关系xn+1=f(xn),n∈N+x_{n+1}=f\left(x_{n}\right), n \in \mathbf{N}_{+}xn+1=f(xn),n∈N+,其中的函数f在区间I上单调,同时数列*{x_n}*的每一项都在区间I中,则只有两种可能:(1)当f为单调增加时,xn{x_n}xn为单调数列;(2)当f为单调减少时,xn{x_n}xn的两个子列x2k−1{x_{2k-1}}x2k−1和x2k{x_{2k}}x2k分别为单调数列,且原创 2021-05-07 12:19:37 · 3192 阅读 · 0 评论 -
Stolz定理及其在求极限上的应用
Stolz定理:(00\frac{0}{0}00型的Stolz定理)设an{a_n}an和bn{b_n}bn都是无穷小量,其中an{a_n}an还是严格单调减少数列,又存在(其中lll为有限或±∞\pm \infty±∞)limn→∞bn+1−bnan+1−an=l\lim _{n \rightarrow \infty} \frac{b_{n+1}-b_{n}}{a_{n+1}-a_{n}}=ln→∞liman+1−anbn+1−bn=l则有limn→∞bnan=l原创 2021-05-07 12:17:54 · 1908 阅读 · 0 评论 -
反证法判断数列发散
判断数列发散有以下几种方法:无界数列一定发散有一个发散子列的数列一定发散如果两个子列不收敛于同一个数列,那么这个数列发散柯西收敛准则也是判定数列发散的充分必要条件总的来说,就是先假定数列收敛,然后设其极限为A,然后导出矛盾即可例1:证明数列{sinn}\{\sin n\}{sinn}发散。证明:设存在limn→∞sinn=a\lim \limits_{n \rightarrow \infty} \sin n=an→∞limsinn=a,则有limn→∞(sin(n+2)−sin原创 2021-05-07 12:12:58 · 3621 阅读 · 0 评论 -
考研数学易错知识点总结
考研数学易错知识点总结1.极限部分判断正确与否:若{an}\left\{a_{n}\right\}{an}收敛,则有limn→∞(an+1−an)=0\lim \limits_{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0n→∞lim(an+1−an)=0和limn→∞an+1an=1\lim \limits_{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1n→∞limanan+1原创 2021-05-07 12:11:48 · 743 阅读 · 0 评论 -
二项展开式及其在极限计算上的应用
二项展开式:(x+y)n=(n0)xny0+(n1)xn−1y1+(n2)xn−2y2+⋯+(nn−1)x1yn−1+(nn)x0yn(x+y)^{n}=\left(\begin{array}{c}{n} \\{0}\end{array}\right) x^{n} y^{0}+\left(\begin{array}{c}{n} \\{1}\end{array}\right) x^{n-1} y^{1}+\left(\begin{array}{c}{n} \\{2}\end{array}原创 2021-05-07 12:09:51 · 884 阅读 · 0 评论 -
对偶法则
对偶法则命题P的一般形式为p1q1,p2q2,⋯pnqn,使得qn+1(成立)\boldsymbol{p}_{1} \boldsymbol{q}_{1}, \boldsymbol{p}_{2} \boldsymbol{q}_{2}, \cdots \boldsymbol{p}_{n} \boldsymbol{q}_{n},使得\boldsymbol{q}_{n+1}(成立)p1q1,p2q2,⋯pnqn,使得qn+1(成立)其中pi(i=1,2,⋯ ,n)p_{i}(i=1,2, \原创 2021-05-06 14:47:01 · 770 阅读 · 0 评论 -
考研数学:三个特殊函数
符号函数:称sgnx={−1,x<00,x=01,x>0\operatorname{sgn} x=\left\{\begin{array}{ll}-1, & x<0 \\ 0, & x=0 \\ 1, & x>0\end{array}\right.sgnx=⎩⎨⎧−1,0,1,x<0x=0x>0为符号函数,显然有∣x∣=xsgnx|x|=x \operatorname{sgn} x∣x∣=xsgnx狄利克雷函数:称D(x)={1..原创 2021-05-06 14:43:51 · 1656 阅读 · 0 评论 -
考研数学常见的不等式及其证明
几个常用的不等式1.伯努利不等式命题:设h>−1,n∈N+h>-1, n \in \mathbf{N}_{+}h>−1,n∈N+,则成立不等式(1+h)n⩾1+nh(1+h)^{n} \geqslant 1+n h(1+h)n⩾1+nh其中当n>1n>1n>1时成立等号的充分必要条件是h=0h=0h=0证明:由于n=1n=1n=1或h=0h=0h=0时不等式明显成立(且其中均成立等号),一下只需讨论n>1n>1n>1和h≠0h \neq原创 2021-05-06 14:42:39 · 17250 阅读 · 2 评论 -
线性代数:延伸组和缩短组
延伸组和缩短组如果向量组线性无关,那么把每个向量填上mmm个分量(所添分量的位置对于每个向量都一样)得到的延伸组也线性无关证明:设α1,⋯ ,αs\boldsymbol{\alpha}_{1}, \cdots, \boldsymbol{\alpha}_{s}α1,⋯,αs的一个延伸组为α~1,⋯ ,α~s\tilde{\boldsymbol{\alpha}}_{1}, \cdots, \tilde{\boldsymbol{\alpha}}_{s}α~1,⋯,α~s,则从k1α~1+⋯+ksa~原创 2021-05-06 14:36:09 · 17811 阅读 · 4 评论 -
向量组相关定理及其推论
1.相关定理及推论命题一:设向量组α1,⋯ ,αs\alpha_{1}, \cdots, \alpha_{s}α1,⋯,αs线性无关,则向量β\betaβ可以由α1,⋯ ,αs\alpha_{1}, \cdots, \alpha_{s}α1,⋯,αs线性表示的充分必要条件是α1,⋯ ,αs,β\alpha_{1}, \cdots, \alpha_{s},\betaα1,⋯,αs,β线性相关。证明:必要性是显然的,下面证明充分性:设α1,⋯ ,αs,β\alpha_{1}, \cdots,原创 2021-05-06 14:34:49 · 3427 阅读 · 1 评论 -
矩阵秩的不等式证明
矩阵秩的不等式及其证明(AB)T=BTAT(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}(AB)T=BTAT证明:设A=(aij)m×s,B=(bij)s×nA=\left(a_{i j}\right)_{m \times s}, B=\left(b_{i j}\right)_{s \times n}A=(aij)m×s,B=(bij)s×n,记AB=C=(cij)m×n,BTAT=D=(dij)n×mA B=C=\left(c_{i j}\原创 2021-05-06 14:30:55 · 4327 阅读 · 2 评论 -
常见矩阵性质
常见矩阵性质1. 转置矩阵(AT)T=A\left(\boldsymbol{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\boldsymbol{A}(AT)T=A(AB)T=BTAT(\boldsymbol{A B})^{\mathrm{T}}=\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}}(AB)T=BTAT设A=(aij)m×s,B=(bij)s×n\boldsymbol{A}=\left(a原创 2021-05-06 14:27:50 · 3738 阅读 · 0 评论 -
行列式计算方法总结
行列式计算方法1.箭型行列式最常见最常用的行列式,特征很好辨识,必须掌握,请看下例:eg:Dn=∣x111...11x21x3......1...xn∣(空白处都为0)eg:D_n= \left|\begin{array}{cccc} x_1&1&1 &... &1\\ 1&x_2&&&\\ 1&&x_3\\ ...&&&...\\ 1&&&...&x_n \en原创 2021-05-06 14:24:05 · 10189 阅读 · 2 评论