隐函数存在定理

隐函数存在定理

例题

1.设有二元函数 x y − z ln ⁡ y + z 2 = 1 x y-z \ln y+z^{2}=1 xyzlny+z2=1,根据隐函数存在定理,存在点 ( 1 , 1 , 0 ) (1,1,0) (1,1,0)的一个邻域,在此邻域内该方程()

A.只能确定一个具有连续偏导数的隐函数 z = z ( x , y ) z=z(x, y) z=z(x,y)
B.可确定两个具有连续偏导数的隐函数 y = y ( x , z ) y=y(x, z) y=y(x,z) z = z ( x , y ) z=z(x, y) z=z(x,y)
C.可确定两个具有连续偏导数的隐函数 x = x ( y , z ) x=x(y, z) x=x(y,z) z = z ( x , y ) z=z(x, y) z=z(x,y)
D.可确定两个具有连续偏导数的隐函数 x = x ( y , z ) x=x(y, z) x=x(y,z) y = y ( x , z ) y=y(x, z) y=y(x,z)

解析:令
F ( x , y , z ) = x y − z ln ⁡ y + z 2 − 1 F(x, y, z)=x y-z \ln y+z^{2}-1 F(x,y,z)=xyzlny+z21

F ( 1 , 1 , 0 ) = 0 F(1,1,0)=0 F(1,1,0)=0

F x ′ = y , F y ′ = x − z y , F z ′ = − ln ⁡ y + 2 z F x ′ ( 1 , 1 , 0 ) = 1 , F y ′ ( 1 , 1 , 0 ) = 1 , F z ′ ( 1 , 1 , 0 ) = 0 \begin{array}{c} F_{x}^{\prime}=y, F_{y}^{\prime}=x-\frac{z}{y}, F_{z}^{\prime}=-\ln y+2 z \\ F_{x}^{\prime}(1,1,0)=1, F_{y}^{\prime}(1,1,0)=1, F_{z}^{\prime}(1,1,0)=0 \end{array} Fx=y,Fy=xyz,Fz=lny+2zFx(1,1,0)=1,Fy(1,1,0)=1,Fz(1,1,0)=0
由隐函数存在定理可知,只能确定两个具有连续偏导数的函数 x = x ( y , z ) x=x(y, z) x=x(y,z) y = y ( x , z ) y=y(x, z) y=y(x,z),故应选D。

注解

隐函数存在定理1:设函数 F ( x , y ) F(x, y) F(x,y)在点 P ( x 0 , y 0 ) P\left(x_{0}, y_{0}\right) P(x0,y0)的某一邻域内具有连续偏导数,且 F ( x 0 , y 0 ) = 0 , F y ( x 0 , y 0 ) ≠ 0 F\left(x_{0}, y_{0}\right)=0, F_{y}\left(x_{0}, y_{0}\right) \neq 0 F(x0,y0)=0,Fy(x0,y0)=0,则方程 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0在点 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0)的某一个邻域内恒内确定一个连续且具有连续导数的函数 y = f ( x ) y=f(x) y=f(x),它满足条件 y 0 = f ( x 0 ) y_{0}=f\left(x_{0}\right) y0=f(x0),并有
d y d x = − F x F y \frac{\mathrm{d} y}{\mathrm{d} x}=-\frac{F_{x}}{F_{y}} dxdy=FyFx

隐函数存在定理2:设函数 F ( x , y , z ) F(x, y, z) F(x,y,z)在点 P ( x 0 , y 0 , z 0 ) P\left(x_{0}, y_{0}, z_{0}\right) P(x0,y0,z0)的某一邻域内具有连续偏导数,且 F ( x 0 , y 0 , z 0 ) = 0 , F z ( x 0 , y 0 , z 0 ) ≠ 0 F\left(x_{0}, y_{0}, z_{0}\right)=0, F_{z}\left(x_{0}, y_{0}, z_{0}\right) \neq 0 F(x0,y0,z0)=0,Fz(x0,y0,z0)=0,则方程 F ( x , y , z ) = 0 F(x, y, z)=0 F(x,y,z)=0在点 ( x 0 , y 0 , z 0 ) \left(x_{0}, y_{0}, z_{0}\right) (x0,y0,z0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数 z = f ( x , y ) z=f(x,y) z=f(x,y),他满足条件 z 0 = f ( x 0 , y 0 ) z_{0}=f\left(x_{0}, y_{0}\right) z0=f(x0,y0),并有
∂ z ∂ x = − F x F z , ∂ z ∂ y = − F y F z \frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}, \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}} xz=FzFx,yz=FzFy

隐函数存在定理3:设 F ( x , y , u , v ) , G ( x , y , u , v ) F(x, y, u, v), G(x, y, u, v) F(x,y,u,v),G(x,y,u,v)在点 P ( x 0 , y 0 , u 0 , v 0 ) P\left(x_{0}, y_{0}, u_{0}, v_{0}\right) P(x0,y0,u0,v0)的某一邻域内具有对各个变量的连续偏导数,又 F ( x 0 , y 0 , u 0 , v 0 ) = 0 , G ( x 0 , y 0 , u 0 , v 0 ) = 0 F\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0, G\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0 F(x0,y0,u0,v0)=0,G(x0,y0,u0,v0)=0,且偏导数所组成的函数行列式
J = ∂ ( F , G ) ∂ ( u , v ) = ∣ ∂ F ∂ u ∂ F ∂ v ∂ G ∂ u ∂ G ∂ v ∣ J=\frac{\partial(F, G)}{\partial(u, v)}=\left|\begin{array}{ll} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{array}\right| J=(u,v)(F,G)=uFuGvFvG
在点 P ( x 0 , y 0 , u 0 , v 0 ) P\left(x_{0}, y_{0}, u_{0}, v_{0}\right) P(x0,y0,u0,v0)不等于零,则方程则 F ( x , y , u , v ) = 0 , G ( x , y , u , v ) = 0 F(x, y, u, v)=0, G(x, y, u, v)=0 F(x,y,u,v)=0,G(x,y,u,v)=0在点 ( x 0 , y 0 , u 0 , v 0 ) \left(x_{0}, y_{0}, u_{0}, v_{0}\right) (x0,y0,u0,v0)的某一邻域内恒能确定一组连续且具有连续偏导数的函数 u = u ( x , y ) , v = v ( x , y ) u=u(x, y), v=v(x, y) u=u(x,y),v=v(x,y),他们满足条件 u 0 = u ( x 0 , y 0 ) , v 0 = v ( x 0 , y 0 ) u_{0}=u\left(x_{0}, y_{0}\right), v_{0}=v\left(x_{0}, y_{0}\right) u0=u(x0,y0),v0=v(x0,y0)

隐函数存在定理的应用

例一:方程
x 2 y 2 − 3 y + 2 x 3 = 0 x^{2} y^{2}-3 y+2 x^{3}=0 x2y23y+2x3=0
在点 ( 1 , 1 ) (1,1) (1,1) ( 1 , 2 ) (1,2) (1,2)两点的近旁定义着 y y y x x x的函数,试求 f ′ ( 1 ) f^{\prime}(1) f(1)

解析:令 F ( x , y ) = x 2 y 2 − 3 y + 2 x 3 F(x, y)=x^{2} y^{2}-3 y+2 x^{3} F(x,y)=x2y23y+2x3,我们有 F ( 1 , 1 ) = 0 F(1,1)=0 F(1,1)=0 F ( 1 , 2 ) = 0 F(1,2)=0 F(1,2)=0,此外:

∂ F ∂ y ( x , y ) = 2 x 2 y − 3 \frac{\partial F}{\partial y}(x, y)=2 x^{2} y-3 yF(x,y)=2x2y3

∂ F ∂ y ( 1 , 1 ) = − 1 , ∂ F ∂ y ( 1 , 2 ) = 1 \frac{\partial F}{\partial y}(1,1)=-1, \frac{\partial F}{\partial y}(1,2)=1 yF(1,1)=1,yF(1,2)=1

因此在 ( 1 , 1 ) (1,1) (1,1)近旁
f ′ ( 1 ) = − ∂ F ∂ x ( 1 , 1 ) ∂ F ∂ y ( 1 , 1 ) = − 8 − 1 = 8 f^{\prime}(1)=-\frac{\frac{\partial F}{\partial x}(1,1)}{\frac{\partial F}{\partial y}(1,1)}=\frac{-8}{-1}=8 f(1)=yF(1,1)xF(1,1)=18=8
( 1 , 2 ) (1,2) (1,2)近旁
f ′ ( 1 ) = − ∂ F ∂ x ( 1 , 2 ) ∂ F ∂ y ( 1 , 2 ) = − 14 1 = − 14 f^{\prime}(1)=\frac{-\frac{\partial F}{\partial x}(1,2)}{\frac{\partial F}{\partial y}(1,2)}=\frac{-14}{1}=-14 f(1)=yF(1,2)xF(1,2)=114=14

这个例子不通过隐函数定理也能算出需要的答案,因为方程 x 2 y 2 − 3 y + 2 x 3 = 0 x^{2} y^{2}-3 y+2 x^{3}=0 x2y23y+2x3=0可以看做是 y y y的二次方程,从中容易解出 y y y对于 x x x的依赖关系,然后直接求导即可。

例二:方程
sin ⁡ x + log ⁡ y − x y 3 = 0 \sin x+\log y-x y^{3}=0 sinx+logyxy3=0
在点 ( 0 , 1 ) (0,1) (0,1)的近旁确定函数 y = f ( x ) y=f(x) y=f(x),求 f ′ ( 0 ) f^{\prime}(0) f(0)

解析:令 F ( x , y ) = sin ⁡ x + log ⁡ y − x y 3 F(x, y)=\sin x+\log y-x y^{3} F(x,y)=sinx+logyxy3,那么 F ( 0 , 1 ) = 0 F(0,1)=0 F(0,1)=0,而且:

∂ F ( 0 , 1 ) ∂ x = 0 , ∂ F ( 0 , 1 ) ∂ y = 1 \frac{\partial F(0,1)}{\partial x}=0, \frac{\partial F(0,1)}{\partial y}=1 xF(0,1)=0,yF(0,1)=1
因此:
f ′ ( 0 ) = − ∂ F ∂ x ( 0 , 1 ) ∂ F ∂ y ( 0 , 1 ) = 0 f^{\prime}(0)=-\frac{\frac{\partial F}{\partial x}(0,1)}{\frac{\partial F}{\partial y}(0,1)}=0 f(0)=yF(0,1)xF(0,1)=0

这个例子就非用隐函数定理不可,因为从给出的方程中无法解出 y y y x x x的显示关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值