隐函数存在定理
例题:
1.设有二元函数 x y − z ln y + z 2 = 1 x y-z \ln y+z^{2}=1 xy−zlny+z2=1,根据隐函数存在定理,存在点 ( 1 , 1 , 0 ) (1,1,0) (1,1,0)的一个邻域,在此邻域内该方程()
A.只能确定一个具有连续偏导数的隐函数
z
=
z
(
x
,
y
)
z=z(x, y)
z=z(x,y)
B.可确定两个具有连续偏导数的隐函数
y
=
y
(
x
,
z
)
y=y(x, z)
y=y(x,z)和
z
=
z
(
x
,
y
)
z=z(x, y)
z=z(x,y)
C.可确定两个具有连续偏导数的隐函数
x
=
x
(
y
,
z
)
x=x(y, z)
x=x(y,z)和
z
=
z
(
x
,
y
)
z=z(x, y)
z=z(x,y)
D.可确定两个具有连续偏导数的隐函数
x
=
x
(
y
,
z
)
x=x(y, z)
x=x(y,z)和
y
=
y
(
x
,
z
)
y=y(x, z)
y=y(x,z)
解析:令
F
(
x
,
y
,
z
)
=
x
y
−
z
ln
y
+
z
2
−
1
F(x, y, z)=x y-z \ln y+z^{2}-1
F(x,y,z)=xy−zlny+z2−1
则
F
(
1
,
1
,
0
)
=
0
F(1,1,0)=0
F(1,1,0)=0
且
F
x
′
=
y
,
F
y
′
=
x
−
z
y
,
F
z
′
=
−
ln
y
+
2
z
F
x
′
(
1
,
1
,
0
)
=
1
,
F
y
′
(
1
,
1
,
0
)
=
1
,
F
z
′
(
1
,
1
,
0
)
=
0
\begin{array}{c} F_{x}^{\prime}=y, F_{y}^{\prime}=x-\frac{z}{y}, F_{z}^{\prime}=-\ln y+2 z \\ F_{x}^{\prime}(1,1,0)=1, F_{y}^{\prime}(1,1,0)=1, F_{z}^{\prime}(1,1,0)=0 \end{array}
Fx′=y,Fy′=x−yz,Fz′=−lny+2zFx′(1,1,0)=1,Fy′(1,1,0)=1,Fz′(1,1,0)=0
由隐函数存在定理可知,只能确定两个具有连续偏导数的函数
x
=
x
(
y
,
z
)
x=x(y, z)
x=x(y,z)和
y
=
y
(
x
,
z
)
y=y(x, z)
y=y(x,z),故应选D。
注解:
隐函数存在定理1:设函数
F
(
x
,
y
)
F(x, y)
F(x,y)在点
P
(
x
0
,
y
0
)
P\left(x_{0}, y_{0}\right)
P(x0,y0)的某一邻域内具有连续偏导数,且
F
(
x
0
,
y
0
)
=
0
,
F
y
(
x
0
,
y
0
)
≠
0
F\left(x_{0}, y_{0}\right)=0, F_{y}\left(x_{0}, y_{0}\right) \neq 0
F(x0,y0)=0,Fy(x0,y0)=0,则方程
F
(
x
,
y
)
=
0
F(x, y)=0
F(x,y)=0在点
(
x
0
,
y
0
)
\left(x_{0}, y_{0}\right)
(x0,y0)的某一个邻域内恒内确定一个连续且具有连续导数的函数
y
=
f
(
x
)
y=f(x)
y=f(x),它满足条件
y
0
=
f
(
x
0
)
y_{0}=f\left(x_{0}\right)
y0=f(x0),并有
d
y
d
x
=
−
F
x
F
y
\frac{\mathrm{d} y}{\mathrm{d} x}=-\frac{F_{x}}{F_{y}}
dxdy=−FyFx
隐函数存在定理2:设函数
F
(
x
,
y
,
z
)
F(x, y, z)
F(x,y,z)在点
P
(
x
0
,
y
0
,
z
0
)
P\left(x_{0}, y_{0}, z_{0}\right)
P(x0,y0,z0)的某一邻域内具有连续偏导数,且
F
(
x
0
,
y
0
,
z
0
)
=
0
,
F
z
(
x
0
,
y
0
,
z
0
)
≠
0
F\left(x_{0}, y_{0}, z_{0}\right)=0, F_{z}\left(x_{0}, y_{0}, z_{0}\right) \neq 0
F(x0,y0,z0)=0,Fz(x0,y0,z0)=0,则方程
F
(
x
,
y
,
z
)
=
0
F(x, y, z)=0
F(x,y,z)=0在点
(
x
0
,
y
0
,
z
0
)
\left(x_{0}, y_{0}, z_{0}\right)
(x0,y0,z0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y),他满足条件
z
0
=
f
(
x
0
,
y
0
)
z_{0}=f\left(x_{0}, y_{0}\right)
z0=f(x0,y0),并有
∂
z
∂
x
=
−
F
x
F
z
,
∂
z
∂
y
=
−
F
y
F
z
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}, \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
∂x∂z=−FzFx,∂y∂z=−FzFy
隐函数存在定理3:设
F
(
x
,
y
,
u
,
v
)
,
G
(
x
,
y
,
u
,
v
)
F(x, y, u, v), G(x, y, u, v)
F(x,y,u,v),G(x,y,u,v)在点
P
(
x
0
,
y
0
,
u
0
,
v
0
)
P\left(x_{0}, y_{0}, u_{0}, v_{0}\right)
P(x0,y0,u0,v0)的某一邻域内具有对各个变量的连续偏导数,又
F
(
x
0
,
y
0
,
u
0
,
v
0
)
=
0
,
G
(
x
0
,
y
0
,
u
0
,
v
0
)
=
0
F\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0, G\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0
F(x0,y0,u0,v0)=0,G(x0,y0,u0,v0)=0,且偏导数所组成的函数行列式
J
=
∂
(
F
,
G
)
∂
(
u
,
v
)
=
∣
∂
F
∂
u
∂
F
∂
v
∂
G
∂
u
∂
G
∂
v
∣
J=\frac{\partial(F, G)}{\partial(u, v)}=\left|\begin{array}{ll} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{array}\right|
J=∂(u,v)∂(F,G)=∣∣∣∣∂u∂F∂u∂G∂v∂F∂v∂G∣∣∣∣
在点
P
(
x
0
,
y
0
,
u
0
,
v
0
)
P\left(x_{0}, y_{0}, u_{0}, v_{0}\right)
P(x0,y0,u0,v0)不等于零,则方程则
F
(
x
,
y
,
u
,
v
)
=
0
,
G
(
x
,
y
,
u
,
v
)
=
0
F(x, y, u, v)=0, G(x, y, u, v)=0
F(x,y,u,v)=0,G(x,y,u,v)=0在点
(
x
0
,
y
0
,
u
0
,
v
0
)
\left(x_{0}, y_{0}, u_{0}, v_{0}\right)
(x0,y0,u0,v0)的某一邻域内恒能确定一组连续且具有连续偏导数的函数
u
=
u
(
x
,
y
)
,
v
=
v
(
x
,
y
)
u=u(x, y), v=v(x, y)
u=u(x,y),v=v(x,y),他们满足条件
u
0
=
u
(
x
0
,
y
0
)
,
v
0
=
v
(
x
0
,
y
0
)
u_{0}=u\left(x_{0}, y_{0}\right), v_{0}=v\left(x_{0}, y_{0}\right)
u0=u(x0,y0),v0=v(x0,y0)
隐函数存在定理的应用:
例一:方程
x
2
y
2
−
3
y
+
2
x
3
=
0
x^{2} y^{2}-3 y+2 x^{3}=0
x2y2−3y+2x3=0
在点
(
1
,
1
)
(1,1)
(1,1)与
(
1
,
2
)
(1,2)
(1,2)两点的近旁定义着
y
y
y为
x
x
x的函数,试求
f
′
(
1
)
f^{\prime}(1)
f′(1)
解析:令 F ( x , y ) = x 2 y 2 − 3 y + 2 x 3 F(x, y)=x^{2} y^{2}-3 y+2 x^{3} F(x,y)=x2y2−3y+2x3,我们有 F ( 1 , 1 ) = 0 F(1,1)=0 F(1,1)=0及 F ( 1 , 2 ) = 0 F(1,2)=0 F(1,2)=0,此外:
∂ F ∂ y ( x , y ) = 2 x 2 y − 3 \frac{\partial F}{\partial y}(x, y)=2 x^{2} y-3 ∂y∂F(x,y)=2x2y−3
∂ F ∂ y ( 1 , 1 ) = − 1 , ∂ F ∂ y ( 1 , 2 ) = 1 \frac{\partial F}{\partial y}(1,1)=-1, \frac{\partial F}{\partial y}(1,2)=1 ∂y∂F(1,1)=−1,∂y∂F(1,2)=1
因此在
(
1
,
1
)
(1,1)
(1,1)近旁
f
′
(
1
)
=
−
∂
F
∂
x
(
1
,
1
)
∂
F
∂
y
(
1
,
1
)
=
−
8
−
1
=
8
f^{\prime}(1)=-\frac{\frac{\partial F}{\partial x}(1,1)}{\frac{\partial F}{\partial y}(1,1)}=\frac{-8}{-1}=8
f′(1)=−∂y∂F(1,1)∂x∂F(1,1)=−1−8=8
在
(
1
,
2
)
(1,2)
(1,2)近旁
f
′
(
1
)
=
−
∂
F
∂
x
(
1
,
2
)
∂
F
∂
y
(
1
,
2
)
=
−
14
1
=
−
14
f^{\prime}(1)=\frac{-\frac{\partial F}{\partial x}(1,2)}{\frac{\partial F}{\partial y}(1,2)}=\frac{-14}{1}=-14
f′(1)=∂y∂F(1,2)−∂x∂F(1,2)=1−14=−14
这个例子不通过隐函数定理也能算出需要的答案,因为方程 x 2 y 2 − 3 y + 2 x 3 = 0 x^{2} y^{2}-3 y+2 x^{3}=0 x2y2−3y+2x3=0可以看做是 y y y的二次方程,从中容易解出 y y y对于 x x x的依赖关系,然后直接求导即可。
例二:方程
sin
x
+
log
y
−
x
y
3
=
0
\sin x+\log y-x y^{3}=0
sinx+logy−xy3=0
在点
(
0
,
1
)
(0,1)
(0,1)的近旁确定函数
y
=
f
(
x
)
y=f(x)
y=f(x),求
f
′
(
0
)
f^{\prime}(0)
f′(0)
解析:令 F ( x , y ) = sin x + log y − x y 3 F(x, y)=\sin x+\log y-x y^{3} F(x,y)=sinx+logy−xy3,那么 F ( 0 , 1 ) = 0 F(0,1)=0 F(0,1)=0,而且:
∂
F
(
0
,
1
)
∂
x
=
0
,
∂
F
(
0
,
1
)
∂
y
=
1
\frac{\partial F(0,1)}{\partial x}=0, \frac{\partial F(0,1)}{\partial y}=1
∂x∂F(0,1)=0,∂y∂F(0,1)=1
因此:
f
′
(
0
)
=
−
∂
F
∂
x
(
0
,
1
)
∂
F
∂
y
(
0
,
1
)
=
0
f^{\prime}(0)=-\frac{\frac{\partial F}{\partial x}(0,1)}{\frac{\partial F}{\partial y}(0,1)}=0
f′(0)=−∂y∂F(0,1)∂x∂F(0,1)=0
这个例子就非用隐函数定理不可,因为从给出的方程中无法解出 y y y对 x x x的显示关系