定积分求n项和极限的三个题目

  1. lim ⁡ n → ∞ ( sin ⁡ π n n + 1 + sin ⁡ 2 π n n + 1 2 + ⋯ + sin ⁡ n π n n + 1 n ) \lim\limits _{n \rightarrow \infty}\left(\frac{\sin \frac{\pi}{n}}{n+1}+\frac{\sin \frac{2 \pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin \frac{n \pi}{n}}{n+\frac{1}{n}}\right) nlim(n+1sinnπ+n+21sinn2π++n+n1sinnnπ)

解析
显然
1 n + 1 ∑ i = 1 n sin ⁡ π i n ⩽ sin ⁡ π n n + 1 + sin ⁡ 2 π n n + 1 2 + ⋯ + sin ⁡ n π n n + 1 n ⩽ 1 n ∑ i = 1 n sin ⁡ π i n \frac{1}{n+1} \sum_{i=1}^{n} \sin \frac{\pi i}{n} \leqslant \frac{\sin \frac{\pi}{n}}{n+1}+\frac{\sin \frac{2 \pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin \frac{n \pi}{n}}{n+\frac{1}{n}} \leqslant \frac{1}{n} \sum_{i=1}^{n} \sin \frac{\pi i}{n} n+11i=1nsinnπin+1sinnπ+n+21sinn2π++n+n1sinnnπn1i=1nsinnπi

lim ⁡ n → ∞ 1 n + 1 ∑ i = 1 n sin ⁡ π i n = lim ⁡ n → ∞ n n + 1 ⋅ 1 n ∑ i = 1 n sin ⁡ π i n = lim ⁡ n → ∞ 1 n ∑ i = 1 n sin ⁡ π i n = ∫ 0 1 sin ⁡ π x d x = 1 π ∫ 0 π sin ⁡ x d x = 2 π ∫ 0 π 2 sin ⁡ x d x = 2 π \begin{aligned} \lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{i=1}^{n} \sin \frac{\pi i}{n} &=\lim _{n \rightarrow \infty} \frac{n}{n+1} \cdot \frac{1}{n} \sum_{i=1}^{n} \sin \frac{\pi i}{n}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \sin \frac{\pi i}{n}=\int_{0}^{1} \sin \pi x \mathrm{d} x \\ &=\frac{1}{\pi} \int_{0}^{\pi} \sin x \mathrm{d} x=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin x \mathrm{d} x=\frac{2}{\pi} \end{aligned} nlimn+11i=1nsinnπi=nlimn+1nn1i=1nsinnπi=nlimn1i=1nsinnπi=01sinπxdx=π10πsinxdx=π202πsinxdx=π2
所以由夹逼准则得:
lim ⁡ n → ∞ ( sin ⁡ π n n + 1 + sin ⁡ 2 π n n + 1 2 + ⋯ + sin ⁡ n π n n + 1 n ) = 2 π \lim _{n \rightarrow \infty}\left(\frac{\sin \frac{\pi}{n}}{n+1}+\frac{\sin \frac{2 \pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin \frac{n \pi}{n}}{n+\frac{1}{n}}\right)=\frac{2}{\pi} nlim(n+1sinnπ+n+21sinn2π++n+n1sinnnπ)=π2

  1. lim ⁡ n → ∞ n ! n n \lim \limits_{n \rightarrow \infty} \frac{\sqrt[n]{n !}}{n} nlimnnn!

解析
lim ⁡ n → ∞ n ! n n = lim ⁡ n → ∞ ( 1 n ⋅ 2 n ⋅ ⋯ ⋅ n n ) 1 n = e lim ⁡ n → ∞ 1 n ∑ i = 1 n ln ⁡ i n = e ∫ 0 1 ln ⁡ x d x \lim _{n \rightarrow \infty} \frac{\sqrt[n]{n !}}{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{n} \cdot \frac{2}{n} \cdot \cdots \cdot \frac{n}{n}\right)^{\frac{1}{n}}=\mathrm{e}^{\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \ln \frac{i}{n}}=\mathrm{e}^{\int_{0}^{1} \ln x \mathrm{d} x} nlimnnn! =nlim(n1n2nn)n1=elimnn1i=1nlnni=e01lnxdx

∫ 0 1 ln ⁡ x d x = x ln ⁡ x ∣ 0 1 − ∫ 0 1 d x = − 1 \int_{0}^{1} \ln x \mathrm{d} x=\left.x \ln x\right|_{0} ^{1}-\int_{0}^{1} \mathrm{d} x=-1 01lnxdx=xlnx0101dx=1
所以原式 = e − 1 =e^{-1} =e1

  1. lim ⁡ n → ∞ ∑ i = 1 n 1 n + i 2 + 1 n \lim \limits_{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n+\frac{i^{2}+1}{n}} nlimi=1nn+ni2+11

解析
因为
∑ i = 1 n 1 n + ( i + 1 ) 2 n ⩽ ∑ i = 1 n 1 n + i 2 + 1 n ⩽ ∑ i = 1 n 1 n + i 2 n = 1 n ∑ i = 1 n 1 1 + ( i n ) 2 \sum_{i=1}^{n} \frac{1}{n+\frac{(i+1)^{2}}{n}} \leqslant \sum_{i=1}^{n} \frac{1}{n+\frac{i^{2}+1}{n}} \leqslant \sum_{i=1}^{n} \frac{1}{n+\frac{i^{2}}{n}}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+\left(\frac{i}{n}\right)^{2}} i=1nn+n(i+1)21i=1nn+ni2+11i=1nn+ni21=n1i=1n1+(ni)21
又因为
∑ i = 1 n 1 n + ( i + 1 ) 2 n = ∑ i = 1 n 1 n + i 2 n − 1 n + 1 n + 1 n + ( n + 1 ) 2 n \sum_{i=1}^{n} \frac{1}{n+\frac{(i+1)^{2}}{n}}=\sum_{i=1}^{n} \frac{1}{n+\frac{i^{2}}{n}}-\frac{1}{n+\frac{1}{n}}+\frac{1}{n+\frac{(n+1)^{2}}{n}} i=1nn+n(i+1)21=i=1nn+ni21n+n11+n+n(n+1)21

1 n + ( n + 1 ) 2 n → 0 ( n → ∞ ) , 1 n + 1 n → 0 ( n → ∞ ) \frac{1}{n+\frac{(n+1)^{2}}{n}} \rightarrow 0(n \rightarrow \infty), \frac{1}{n+\frac{1}{n}} \rightarrow 0(n \rightarrow \infty) n+n(n+1)210(n),n+n110(n)
所以由夹逼准则,原式 = lim ⁡ n → ∞ 1 n ∑ i = 1 n 1 1 + ( i n ) 2 = ∫ 0 1 d x 1 + x 2 = π 4 =\lim \limits_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+\left(\frac{i}{n}\right)^{2}}=\int_{0}^{1} \frac{\mathrm{d} x}{1+x^{2}}=\frac{\pi}{4} =nlimn1i=1n1+(ni)21=011+x2dx=4π

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值