- lim n → ∞ ( sin π n n + 1 + sin 2 π n n + 1 2 + ⋯ + sin n π n n + 1 n ) \lim\limits _{n \rightarrow \infty}\left(\frac{\sin \frac{\pi}{n}}{n+1}+\frac{\sin \frac{2 \pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin \frac{n \pi}{n}}{n+\frac{1}{n}}\right) n→∞lim(n+1sinnπ+n+21sinn2π+⋯+n+n1sinnnπ)
解析:
显然
1 n + 1 ∑ i = 1 n sin π i n ⩽ sin π n n + 1 + sin 2 π n n + 1 2 + ⋯ + sin n π n n + 1 n ⩽ 1 n ∑ i = 1 n sin π i n \frac{1}{n+1} \sum_{i=1}^{n} \sin \frac{\pi i}{n} \leqslant \frac{\sin \frac{\pi}{n}}{n+1}+\frac{\sin \frac{2 \pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin \frac{n \pi}{n}}{n+\frac{1}{n}} \leqslant \frac{1}{n} \sum_{i=1}^{n} \sin \frac{\pi i}{n} n+11i=1∑nsinnπi⩽n+1sinnπ+n+21sinn2π+⋯+n+n1sinnnπ⩽n1i=1∑nsinnπi
且
lim n → ∞ 1 n + 1 ∑ i = 1 n