定积分求n项和极限的三个题目

  1. lim ⁡ n → ∞ ( sin ⁡ π n n + 1 + sin ⁡ 2 π n n + 1 2 + ⋯ + sin ⁡ n π n n + 1 n ) \lim\limits _{n \rightarrow \infty}\left(\frac{\sin \frac{\pi}{n}}{n+1}+\frac{\sin \frac{2 \pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin \frac{n \pi}{n}}{n+\frac{1}{n}}\right) nlim(n+1sinnπ+n+21sinn2π++n+n1sinnnπ)

解析
显然
1 n + 1 ∑ i = 1 n sin ⁡ π i n ⩽ sin ⁡ π n n + 1 + sin ⁡ 2 π n n + 1 2 + ⋯ + sin ⁡ n π n n + 1 n ⩽ 1 n ∑ i = 1 n sin ⁡ π i n \frac{1}{n+1} \sum_{i=1}^{n} \sin \frac{\pi i}{n} \leqslant \frac{\sin \frac{\pi}{n}}{n+1}+\frac{\sin \frac{2 \pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin \frac{n \pi}{n}}{n+\frac{1}{n}} \leqslant \frac{1}{n} \sum_{i=1}^{n} \sin \frac{\pi i}{n} n+11i=1nsinnπin+1sinnπ+n+21sinn2π++n+n1sinnnπn1i=1nsinnπi

lim ⁡ n → ∞ 1 n + 1 ∑ i = 1 n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值