已知函数
f
(
x
)
=
{
x
2
x
,
x
>
0
x
e
x
+
1
,
x
⩽
0
f(x)=\left\{\begin{array}{ll}{x^{2 x},} & {x>0} \\ {x e^{x}+1,} & {x \leqslant 0}\end{array}\right.
f(x)={x2x,xex+1,x>0x⩽0,求
f
′
(
x
)
f^{\prime}(x)
f′(x),并求
f
(
x
)
f(x)
f(x)的极值。
解析:当
x
>
0
x>0
x>0时,我们有:
f
′
(
x
)
=
(
e
2
ln
x
)
′
=
e
2
ln
x
⋅
2
(
x
ln
x
)
′
=
2
e
2
ln
x
(
ln
x
+
1
)
=
2
x
2
x
(
ln
x
+
1
)
\begin{aligned} f^{\prime}(x) &=\left(e^{2 \ln x}\right)^{\prime}=\mathrm{e}^{2 \ln x} \cdot 2(x \ln x)^{\prime} \\ &=2 \mathrm{e}^{2 \ln x}(\ln x+1)=2 x^{2 x}(\ln x+1) \end{aligned}
f′(x)=(e2lnx)′=e2lnx⋅2(xlnx)′=2e2lnx(lnx+1)=2x2x(lnx+1)
当
x
<
0
x<0
x<0时
f
′
(
x
)
=
(
x
e
x
+
1
)
′
=
(
x
+
1
)
e
x
f^{\prime}(x)=\left(x \mathrm{e}^{x}+1\right)^{\prime}=(x+1) \mathrm{e}^{x}
f′(x)=(xex+1)′=(x+1)ex
由于:
lim
x
→
0
+
f
(
x
)
−
f
(
0
)
x
−
0
=
lim
x
→
0
+
e
2
h
r
x
−
1
x
=
lim
x
→
0
+
2
x
ln
x
x
=
−
∞
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{\mathrm{e}^{2 \mathrm{hr} x}-1}{x}=\lim _{x \rightarrow 0^{+}} \frac{2 x \ln x}{x}=-\infty
x→0+limx−0f(x)−f(0)=x→0+limxe2hrx−1=x→0+limx2xlnx=−∞
所以
f
′
(
0
)
f^{'}(0)
f′(0)不存在,故
f
′
(
x
)
=
{
2
x
2
x
(
ln
x
+
1
)
,
x
>
0
(
x
+
1
)
e
x
,
x
<
0
f^{\prime}(x)=\left\{\begin{array}{ll}{2 x^{2 x}(\ln x+1),} & {x>0} \\ {(x+1) \mathrm{e}^{x},} & {x<0}\end{array}\right.
f′(x)={2x2x(lnx+1),(x+1)ex,x>0x<0
注意到
lim
x
→
0
+
x
2
x
=
1
=
f
(
0
)
=
f
(
0
−
0
)
\lim _{x \rightarrow 0^{+}} x^{2 x}=1=f(0)=f(0-0)
x→0+limx2x=1=f(0)=f(0−0)
f
(
x
)
f(x)
f(x)在
x
=
0
x=0
x=0处连续.另外,由
f
′
(
x
)
=
0
f^{\prime}(x)=0
f′(x)=0,得
x
=
1
e
x=\frac{1}{e}
x=e1或
x
=
−
1
x=-1
x=−1,在
(
−
∞
,
−
1
)
,
(
−
1
,
0
)
,
(
0
,
1
e
)
(
1
e
,
+
∞
)
(-\infty,-1),(-1,0),\left(0, \frac{1}{\mathrm{e}}\right)\left(\frac{1}{\mathrm{e}},+\infty\right)
(−∞,−1),(−1,0),(0,e1)(e1,+∞)内
f
′
(
x
)
f^{\prime}(x)
f′(x)依次取负、正、负、正号。根据第一充分条件,
f
(
x
)
f(x)
f(x)在
x
=
−
1
x=-1
x=−1及
x
=
1
e
x=\frac{1}{e}
x=e1处取极小值,分别为
f
(
−
1
)
=
1
−
1
e
f(-1)=1-\frac{1}{e}
f(−1)=1−e1,
f
(
1
e
)
=
(
1
e
)
2
e
=
e
−
2
e
f\left(\frac{1}{\mathrm{e}}\right)=\left(\frac{1}{\mathrm{e}}\right)^{\frac{2}{e}}=\mathrm{e}^{-\frac{2}{e}}
f(e1)=(e1)e2=e−e2,在
x
=
0
x=0
x=0处取得极大值
f
(
0
)
=
1
f(0)=1
f(0)=1