考研数学:不可导点也有可能是极值

已知函数 f ( x ) = { x 2 x , x > 0 x e x + 1 , x ⩽ 0 f(x)=\left\{\begin{array}{ll}{x^{2 x},} & {x>0} \\ {x e^{x}+1,} & {x \leqslant 0}\end{array}\right. f(x)={x2x,xex+1,x>0x0,求 f ′ ( x ) f^{\prime}(x) f(x),并求 f ( x ) f(x) f(x)的极值。
解析:当 x > 0 x>0 x>0时,我们有:
f ′ ( x ) = ( e 2 ln ⁡ x ) ′ = e 2 ln ⁡ x ⋅ 2 ( x ln ⁡ x ) ′ = 2 e 2 ln ⁡ x ( ln ⁡ x + 1 ) = 2 x 2 x ( ln ⁡ x + 1 ) \begin{aligned} f^{\prime}(x) &=\left(e^{2 \ln x}\right)^{\prime}=\mathrm{e}^{2 \ln x} \cdot 2(x \ln x)^{\prime} \\ &=2 \mathrm{e}^{2 \ln x}(\ln x+1)=2 x^{2 x}(\ln x+1) \end{aligned} f(x)=(e2lnx)=e2lnx2(xlnx)=2e2lnx(lnx+1)=2x2x(lnx+1)
x < 0 x<0 x<0
f ′ ( x ) = ( x e x + 1 ) ′ = ( x + 1 ) e x f^{\prime}(x)=\left(x \mathrm{e}^{x}+1\right)^{\prime}=(x+1) \mathrm{e}^{x} f(x)=(xex+1)=(x+1)ex
由于:
lim ⁡ x → 0 + f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 + e 2 h r x − 1 x = lim ⁡ x → 0 + 2 x ln ⁡ x x = − ∞ \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{\mathrm{e}^{2 \mathrm{hr} x}-1}{x}=\lim _{x \rightarrow 0^{+}} \frac{2 x \ln x}{x}=-\infty x0+limx0f(x)f(0)=x0+limxe2hrx1=x0+limx2xlnx=
所以 f ′ ( 0 ) f^{'}(0) f(0)不存在,故
f ′ ( x ) = { 2 x 2 x ( ln ⁡ x + 1 ) , x > 0 ( x + 1 ) e x , x < 0 f^{\prime}(x)=\left\{\begin{array}{ll}{2 x^{2 x}(\ln x+1),} & {x>0} \\ {(x+1) \mathrm{e}^{x},} & {x<0}\end{array}\right. f(x)={2x2x(lnx+1),(x+1)ex,x>0x<0
注意到
lim ⁡ x → 0 + x 2 x = 1 = f ( 0 ) = f ( 0 − 0 ) \lim _{x \rightarrow 0^{+}} x^{2 x}=1=f(0)=f(0-0) x0+limx2x=1=f(0)=f(00)
f ( x ) f(x) f(x) x = 0 x=0 x=0处连续.另外,由 f ′ ( x ) = 0 f^{\prime}(x)=0 f(x)=0,得 x = 1 e x=\frac{1}{e} x=e1 x = − 1 x=-1 x=1,在 ( − ∞ , − 1 ) , ( − 1 , 0 ) , ( 0 , 1 e ) ( 1 e , + ∞ ) (-\infty,-1),(-1,0),\left(0, \frac{1}{\mathrm{e}}\right)\left(\frac{1}{\mathrm{e}},+\infty\right) (,1),(1,0),(0,e1)(e1,+) f ′ ( x ) f^{\prime}(x) f(x)依次取负、正、负、正号。根据第一充分条件, f ( x ) f(x) f(x) x = − 1 x=-1 x=1 x = 1 e x=\frac{1}{e} x=e1处取极小值,分别为 f ( − 1 ) = 1 − 1 e f(-1)=1-\frac{1}{e} f(1)=1e1, f ( 1 e ) = ( 1 e ) 2 e = e − 2 e f\left(\frac{1}{\mathrm{e}}\right)=\left(\frac{1}{\mathrm{e}}\right)^{\frac{2}{e}}=\mathrm{e}^{-\frac{2}{e}} f(e1)=(e1)e2=ee2,在 x = 0 x=0 x=0处取得极大值 f ( 0 ) = 1 f(0)=1 f(0)=1

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值