【LearnX导读】人脸检测是人脸相关应用中必不可少的一环。如我们熟悉的刷脸解锁,美颜相机,刷脸支付等都离不开人脸检测。这篇文章写的就是提高人脸检测准确度的方法。这篇文章从特征抽取,锚匹配(Anchor matching),损失函数三个方面研究人脸检测模型,相应的提出更强的特征学习模块EFM,更有效的锚匹配IAM,更有效的损失函数PAL来提高人脸检测的准确度。该方法在主流的人脸检测基准数据集WIDER FACE和FDDB上都达到了state-of-the-are水平。由于该方法使用的是双射检测方法,因此命名为双射人脸检测器(Dual Shot Face Detector, DSFD)。
背景
话说,人脸检测方面的研究也大概有50年的历史了,最近几年每年在人脸检测方面的论文没有一千也有一百吧,而且都声称超越了之前的模型达到了state-of-the-art。
那么,人脸检测目前达到了什么水平?在哪些方面有待提升?
当前的人脸检测主流是用深度神经网络,近几年来这方面的研究非常多,在简单