腾讯最新人脸检测模型DSFD: Dual Shot Face Detector

image

【LearnX导读】人脸检测是人脸相关应用中必不可少的一环。如我们熟悉的刷脸解锁,美颜相机,刷脸支付等都离不开人脸检测。这篇文章写的就是提高人脸检测准确度的方法。这篇文章特征抽取,锚匹配(Anchor matching),损失函数三个方面研究人脸检测模型,相应的提出更强的特征学习模块EFM,更有效的锚匹配IAM,更有效的损失函数PAL来提高人脸检测的准确度。该方法在主流的人脸检测基准数据集WIDER FACE和FDDB上都达到了state-of-the-are水平。由于该方法使用的是双射检测方法,因此命名为双射人脸检测器(Dual Shot Face Detector, DSFD)。


 

背景

话说,人脸检测方面的研究也大概有50年的历史了,最近几年每年在人脸检测方面的论文没有一千也有一百吧,而且都声称超越了之前的模型达到了state-of-the-art。

那么,人脸检测目前达到了什么水平?在哪些方面有待提升?

当前的人脸检测主流是用深度神经网络,近几年来这方面的研究非常多,在简单

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值