多元函数的极值及其求法

一、多元函数的极值及最大值与最小值:
**定义:**设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的定义域为 D , P 0 ( x 0 , y 0 ) D,P_0(x_0,y_0) DP0(x0,y0) D D D的内点。若存在 P 0 P_0 P0的某个邻域 U ( P 0 ) ⊂ D U(P_0)\subset D U(P0)D

若对于该邻域内异与 P 0 P_0 P0的任何点 ( x , y ) (x,y) (x,y),都有: f ( x , y ) < f ( x 0 , y 0 ) f(x,y)<f(x_0, y_0) f(x,y)<f(x0,y0)则称函数 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)极大值 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0),点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)称为函数 f ( x , y ) f(x,y) f(x,y)极大值点

若对于该邻域内异与 P 0 P_0 P0的任何点 ( x , y ) (x,y) (x,y),都有: f ( x , y ) > f ( x 0 , y 0 ) f(x,y)>f(x_0, y_0) f(x,y)>f(x0,y0)则称函数 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)极小 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0),点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)称为函数 f ( x , y ) f(x,y) f(x,y)极小值点

极大值与极小值统称为极值。使得函数取得极值的点称为极值点

**定理1(必要条件):**设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)具有偏导数,且在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处有极值,则有 f x ( x 0 , y 0 ) = 0 ,   f y ( x 0 , y 0 ) = 0 f_x(x_0,y_0) = 0,\ f_y(x_0,y_0) = 0 fx(x0,y0)=0, fy(x0,y0)=0

**定理2(充分条件):**设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一邻域内连续且有一阶及二阶连续偏导数,又 f x ( x 0 , y 0 ) = 0 ,   f y ( x 0 , y 0 ) = 0 f_x(x_0,y_0)=0,\ f_y(x_0,y_0) = 0 fx(x0,y0)=0, fy(x0,y0)=0,令 f x x ( x 0 , y 0 ) = A ,   f x y ( x 0 , y 0 ) = B ,   f y y ( x 0 , y 0 ) = C f_{xx}(x_0,y_0) = A,\ f_{xy}(x_0,y_0) = B,\ f_{yy}(x_0,y_0) = C fxx(x0,y0)=A, fxy(x0,y0)=B, fyy(x0,y0)=C则有: D = ∣ f x x f x y f x y f y y ∣ = ∣ A B B C ∣ D=\begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \\ \end{vmatrix} = \begin{vmatrix} A & B \\ B & C \\ \end{vmatrix} D=fxxfxyfxyfyy=ABBC f ( x y ) f(xy) f(xy) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)是否取得极值的条件如下:

  • D > 0 D>0 D>0时,有极值,当 A < 0 A<0 A<0时有极大值,当 A > 0 A>0 A>0时有极小值;
  • D < 0 D<0 D<0时,没有极值;
  • D = 0 D=0 D=0时,另做讨论。

二、条件极值与拉格朗日数乘法:
条件极值的定义:对自变量有附加条件的极值称为条件极值。
例如: { z = f ( x , y ) ϕ ( x , y ) = 0 \begin{cases} z=f(x,y) \\ \phi (x,y)=0 \end{cases} {z=f(x,y)ϕ(x,y)=0其中 ϕ ( x , y ) = 0 就 是 函 数 z = f ( x , y ) \phi (x,y)=0就是函数z=f(x,y) ϕ(x,y)=0z=f(x,y)的条件,在这个条件下取得的极值就叫
条件极值

此时引进辅助函数 L ( x , y ) = f ( x , y ) + λ ϕ ( x , y ) L(x,y)=f(x,y)+\lambda \phi(x,y) L(x,y)=f(x,y)+λϕ(x,y)函数 L ( x , y ) L(x,y) L(x,y)称为拉格朗日函数,参数 λ \lambda λ称为拉格朗日乘子

拉格朗日乘数法:
由拉格朗日函数可以得到: L x ( x , y ) = f x ( x , y ) + λ ϕ x ( x , y ) L_x(x,y)=f_x(x,y)+\lambda \phi_x(x,y) Lx(x,y)=fx(x,y)+λϕx(x,y) L y ( x , y ) = f y ( x , y ) + λ ϕ y ( x , y ) L_y(x,y)=f_y(x,y)+\lambda \phi_y(x,y) Ly(x,y)=fy(x,y)+λϕy(x,y)与条件相结合可以得到: { f x ( x , y ) + λ ϕ x ( x , y ) = 0 f y ( x , y ) + λ ϕ y ( x , y ) = 0 ϕ ( x , y ) = 0 \begin{cases} f_x(x,y)+\lambda \phi_x(x,y)=0 \\ f_y(x,y)+\lambda \phi_y(x,y)=0 \\ \phi(x,y)=0 \end{cases} fx(x,y)+λϕx(x,y)=0fy(x,y)+λϕy(x,y)=0ϕ(x,y)=0解此方程组得到的 ( x , y ) (x,y) (x,y)就是函数 f ( x , y ) f(x,y) f(x,y)在附加条件 ϕ ( x , y ) = 0 \phi(x,y)=0 ϕ(x,y)=0下的可能极值点,至于具体是还是不是,要根据实际问题本身的性质来判定。

  • 21
    点赞
  • 57
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值