机器学习数学基础-二元函数的极值

二元函数的极值是微积分中的一个重要概念,它描述了函数在某一点的局部最大值或最小值。在二元函数的极值问题中,我们关注的是函数在二维平面上如何变化,特别是函数值在某些点的局部极大值或极小值。

1. 二元函数的极值定义

设 ( f(x, y) ) 是一个定义在平面上某区域 ( D ) 中的二元函数。如果在点 ( (x_0, y_0) ) 处,函数值 ( f(x_0, y_0) ) 在某个邻域内比其他点的函数值大(小),那么我们就说 ( f(x, y) ) 在该点有一个局部极大值(或局部极小值)。

  • 局部极大值:若 ( f(x_0, y_0) ) 大于该点邻域内的其他点的函数值,即对于任意接近 ( (x_0, y_0) ) 的点 ( (x, y) ),都有 ( f(x, y) \leq f(x_0, y_0) )。
  • 局部极小值:若 ( f(x_0, y_0) ) 小于该点邻域内的其他点的函数值,即对于任意接近 ( (x_0, y_0) ) 的点 ( (x, y) ),都有 ( f(x, y) \geq f(x_0, y_0) )。

2. 寻找极值点的方法:一阶条件

为了寻找二元函数 ( f(x, y) ) 的极值点,我们首先需要计算其一阶偏导数。对于极值点,函数在该点的偏导数必须为零,即:

∂ f ∂ x ( x 0 , y 0 ) = 0 和 ∂ f ∂ y ( x 0 , y 0 ) = 0 \frac{\partial f}{\partial x}(x_0, y_0) = 0 \quad \text{和} \quad \frac{\partial f}{\partial y}(x_0, y_0) = 0 xf(x0,y0)=0yf(x0,y0)=0

这些条件是寻找极值点的必要条件。若点 ( (x_0, y_0) ) 满足以上条件,我们接下来可以通过二阶条件来判断该点是极大值、极小值还是鞍点。

3. 二阶条件:判断极值的性质

通过计算二阶偏导数,可以使用二阶导数判别法来判断极值点的性质。首先,计算以下几个二阶偏导数:

  • ( f_{xx} = \frac{\partial^2 f}{\partial x^2} )
  • ( f_{yy} = \frac{\partial^2 f}{\partial y^2} )
  • ( f_{xy} = \frac{\partial^2 f}{\partial x \partial y} )

然后,计算Hesse矩阵的行列式 ( D ):

D = f x x f y y − ( f x y ) 2 D = f_{xx} f_{yy} - (f_{xy})^2 D=fxxfyy(fxy)2

根据 ( D ) 和 ( f_{xx} ) 的值,我们可以得出以下结论:

  • 如果 ( D > 0 ) 且 ( f_{xx} > 0 ),则 ( (x_0, y_0) ) 是一个局部极小值点。
  • 如果 ( D > 0 ) 且 ( f_{xx} < 0 ),则 ( (x_0, y_0) ) 是一个局部极大值点。
  • 如果 ( D < 0 ),则 ( (x_0, y_0) ) 是一个鞍点,即既不是极大值也不是极小值。
  • 如果 ( D = 0 ),则无法通过二阶导数判别法判断,需要进一步分析。

4. 例题

例题 1:( f(x, y) = x^2 + y^2 )

我们来分析函数 ( f(x, y) = x^2 + y^2 ) 的极值。

步骤 1:计算一阶偏导数

  • ( \frac{\partial f}{\partial x} = 2x )
  • ( \frac{\partial f}{\partial y} = 2y )

令这两个偏导数为零,得到 ( x = 0 ) 和 ( y = 0 )。

因此,候选的极值点是 ( (0, 0) )。

步骤 2:计算二阶偏导数

  • ( f_{xx} = 2 )
  • ( f_{yy} = 2 )
  • ( f_{xy} = 0 )

步骤 3:计算行列式 ( D )

D = f x x f y y − ( f x y ) 2 = 2 × 2 − 0 2 = 4 D = f_{xx} f_{yy} - (f_{xy})^2 = 2 \times 2 - 0^2 = 4 D=fxxfyy(fxy)2=2×202=4

由于 ( D > 0 ) 且 ( f_{xx} > 0 ),根据二阶导数判别法,函数 ( f(x, y) = x^2 + y^2 ) 在点 ( (0, 0) ) 处有一个局部极小值。

例题 2:( f(x, y) = x^3 - 3xy^2 )

现在分析函数 ( f(x, y) = x^3 - 3xy^2 ) 的极值。

步骤 1:计算一阶偏导数

  • ( \frac{\partial f}{\partial x} = 3x^2 - 3y^2 )
  • ( \frac{\partial f}{\partial y} = -6xy )

令这两个偏导数为零,得到:

  • ( 3x^2 - 3y^2 = 0 \Rightarrow x^2 = y^2 )
  • ( -6xy = 0 \Rightarrow x = 0 \text{ 或 } y = 0 )

解得候选极值点为 ( (0, 0) )、( (1, 1) ) 和 ( (-1, 1) )。

步骤 2:计算二阶偏导数

  • ( f_{xx} = 6x )
  • ( f_{yy} = -6x )
  • ( f_{xy} = -6y )

步骤 3:计算行列式 ( D )

对于点 ( (0, 0) ):

D = f x x f y y − ( f x y ) 2 = 6 ( 0 ) × ( − 6 ( 0 ) ) − ( − 6 ( 0 ) ) 2 = 0 D = f_{xx} f_{yy} - (f_{xy})^2 = 6(0) \times (-6(0)) - (-6(0))^2 = 0 D=fxxfyy(fxy)2=6(0)×(6(0))(6(0))2=0

由于 ( D = 0 ),我们无法通过二阶导数判别法判断该点的性质,需要进一步分析。可以通过图像或者其他方法进一步探讨该点是否为鞍点。

5. 总结

二元函数的极值问题可以通过以下步骤求解:

  1. 计算一阶偏导数,并找到候选极值点。
  2. 计算二阶偏导数和行列式 ( D ),利用二阶导数判别法来判断极值点的性质。
  3. 根据 ( D ) 和 ( f_{xx} ) 的符号,确定该点是局部极大值、局部极小值还是鞍点。

极值问题在优化、经济学、物理学等多个领域中有广泛应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值