Backto DeepCV
在实际训练模型中,要把关键指标用图表现出来,观察-判断-调整-观察,直到达到预设目标(放弃)为止。
Figure 1
通过观察 epoch-loss
曲线,判定 LR 是否得当;
Figure 2
通过观察更细化的 epoch-loss
曲线,epoch 细化成了每个 mini-batch,batch 参数设置是否得当;
Figure 3
通过观察 Accuracy(training/validation) - epoch
曲线, 确定模型是否 under-fitting
or over-fitting
.
再看具体的场景,
,可以发现train_loss 走的比较好,但是 val_loss 一直很高而且动荡很大。说明了什么?说明平时学习不错,但考试成绩糟糕且波动很大。分析原因,很可能是训练样本单一但是测试样本多样,导致了学习很容易但是测试动荡出错。可能的解决方案是若数据量不大,考虑增加训练集的数量和种类;若样本集比较大了,考虑把训练样本和测试样本重新混洗,cross-validation 试试。