【DeepCV】模型训练--有图有真相

Backto DeepCV

在实际训练模型中,要把关键指标用图表现出来,观察-判断-调整-观察,直到达到预设目标(放弃)为止。

Figure 1 通过观察 epoch-loss 曲线,判定 LR 是否得当;
Figure 2 通过观察更细化的 epoch-loss 曲线,epoch 细化成了每个 mini-batch,batch 参数设置是否得当;
Figure 3 通过观察 Accuracy(training/validation) - epoch 曲线, 确定模型是否 under-fitting or over-fitting.

在这里插入图片描述

再看具体的场景,
在这里插入图片描述,可以发现train_loss 走的比较好,但是 val_loss 一直很高而且动荡很大。说明了什么?说明平时学习不错,但考试成绩糟糕且波动很大。分析原因,很可能是训练样本单一但是测试样本多样,导致了学习很容易但是测试动荡出错。可能的解决方案是若数据量不大,考虑增加训练集的数量和种类;若样本集比较大了,考虑把训练样本和测试样本重新混洗,cross-validation 试试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值