【DeepCV】深度学习 GPU 和计算平台的选取

本文介绍了深度学习中GPU的选择,强调Nvidia的RTX系列性价比较高,推荐模型训练使用TPU或AWS,部署阶段选用T4。讨论了GPU的性能指标,并对比了服务器端、消费端和嵌入式端的Nvidia计算卡谱系,如Tesla、GeForce和Jetson系列。
摘要由CSDN通过智能技术生成

Backto DeepCV

最佳实践 Best Practice

20200703

  • 模型设计阶段:Nvidia RTX 2080
  • 模型训练阶段:能 TPU 就 TPU,不能则 AWS ,本地用 V100 之类
  • 模型部署阶段:T4

细节 Details

  • 实体GPU厂家,Nvidia 一家独大,AMD,Intel,其他公司,一概不考虑。
  • Nvidia GPU 系列,Tesla 卡、Quadro卡、 Titan 卡都是用 霸王条款 圈钱的东西,仅考虑 GTX/RTX 系列
  • Nvidia GTX 系列显卡,游戏玩家爱,挖矿爱,深度学习也爱。所以,溢价较高,尤其是新品。
  • Nvidia RTX 系列显卡,能力稍逊 GTX,但是 有 Nvidia 力推的 R(ay Tracing), 所以通常性价比最高。
  • TPU 对 TensorFlow 支持最好,但会遇到不明所以的 bug
  • AWS 属于云端 GPU,按需配置,价格小贵。
  • 显卡性能指标,主要关注:CUDA Core、时钟频率、内存、16位计算能力、Tensor Core 等。依据经验: 卷积网络和Transformer:Tensor Core>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值