【DL】深度残差网络 Residual Network, ResNet

本文探讨了深度残差网络ResNet的设计思路,它解决了深度网络训练时出现的精度下降问题。通过学习残差,ResNet使得训练深层网络更加容易,从而在视觉任务中取得了显著的性能提升。此外,文章还提到了ResNet的多种变体及在PyTorch中的实现。
摘要由CSDN通过智能技术生成

Backto Model Zoo


缘起

  • 直觉上:越深的网络representation能力越好,精度越高
  • 理论上:深层网络应该达到至少不差于浅层网络的精度表现,因为让深层网络一部分与浅层网络等同,多余部分变成恒等 identity,二者效果就等同了。
  • 实践中:随着深度的逐步增大,训练误差和测试误差反而会增大

思路

  • why?: 首先,不是 over-fitting 问题,因为训练误差也变差了。其次,猜测可能是因为训练量/收敛难度 随着 深度指数增长,也就是说只要硬件够硬,时间够长,深层网络一定还是可以超越浅层网络的。但是,这并不具有实际可行性。再之后,具体而言,
  • how?:学啥目标啊,直接学残差好伐!假设网络原本渐进逼近函数 H ( x ) , x H(x), x H(x),x 是 input。当这层网络是一个鸡肋网络的时候,我希望他不做任何操作即 H ( x ) = x H(x) = x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值