样例输入
3 10
样例输出
3=3
4=22
5=5
6=23
7=7
8=222
9=33
10=25
#include <iostream>
#include <stdio.h>
#include <string>
#include <string.h>
#include <algorithm>
#include<ctype.h>
#include<math.h>
#define maxn 100010
using namespace std;
//1、明确功能
//2、寻找结束条件
//3、寻找等价关系式,缩小参数n范围
//例如阶乘 f(n)=n*f(n-1)
//判断素数
int issu(int n){
if(n==1) return 0;
if(n==2) return 1;
else{
for(int i=2;i<=sqrt(n);i++){
if(n%i==0) return 0;
}
return 1;
}
}
int main(){
int a,b;
cin>>a>>b;
for(int i=a;i<=b;i++){
//no
if(issu(i)==1) cout<<i<<"="<<i<<endl;
//yes
else{
cout<<i<<"=";
int t=i,j=2;
while(t>1){
if(t%j==0){//100%2==0
t=t/j;//100/2==50
cout<<j;
if(t!=1) cout<<"*";
else cout<<endl;
}
else j++;
}
}
}
return 0;
}
具体说明:就是一个数在从2开始判断是否为其质因数,如果是那么就除尽2的因数,那么接下来循环能被除尽2整除的数,
这个数必定是原数的质因数,依次类推。例如输入的数n=100,那么从2开始判断是否是100的质因数,明显2是100的质因数
,那么就一直除以2,100/2=50,50/2=25,直到不能整除为止,接下来继续进行循环对3,4...进行整除,此时n=25不能
整除
3,4,(不用担心整除4、6等非素数,因为已经除了2 3 等他们的质因数)跳到了5。25/5=5,那么5也是100的质因数。
接着25/5=5,5/5=1,1/5不是整除。此时i=1<j=5,for循环条件不满足,循环结束,最终得到100=2*2*5*5