QGIS文章五——对遥感影像进行土地类型分类—监督分类(dzetsaka : classification tool)

dzetsaka classification tool是QGIS的强大分类插件,目前主要提供了高斯混合模型分类器、Random Forest、KNN和SVM四种分类器模型,相比于SCP(Semi-Automatic Classification),他的一个特点就是功能专一,操作简单。

从十一月开始一直忙于写个可研材料,持续忙了20天,此外关于训练这事儿,主要因素一个是数据标注,一个是摸索工具,另外一个是主机性能。想让数据统计的准一点,就得做好数据标注,数据标注是个体力活也是个技术活,还得有一定常识;摸索工具,在scp使用上,一直缺乏好的文档,标注起来总是磕磕绊绊的;主机性能也很重要,大部分影像都是上G的图片,QGIS找了半天也无法设置内存和GPU,总是跑一半,主机就挂了。

后来找到了这个dzetsaka classification tool工具,也是尝试了两天,总算有点小进展,但对于大的影像处理还是很慢,一跑就挂,或者跑一天多没什么结果,姑且先拿来做尝试吧。

一、zetsaka classification tool依赖于scikit-learn包,所以需要在OSGeo4W Shell先安装。

5d597ed0623511551044f3c769367fb3.png

执行命令行pip install

D:\Program Files\QGIS 3.34.0>python3 -m pip install scikit-learn -U --user
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting scikit-learn
...
Installing collected packages: threadpoolctl, joblib, scikit-learn
Successfully installed joblib-1.3.2 scikit-learn-1.3.2 threadpoolctl-3.2.0
[notice] A new release of pip is available: 23.2.1-> 23.3.1
[notice] To update, run: python3.exe -m pip install --upgrade pip
D:\Program Files\QGIS 3.34.0>

二、到Plugins查找dzetsaka 工具,显示dzetsaka : Classification tool即可安装

三、在Plugin菜单中有一个dzetsaka 子菜单,下面还有子菜单

1、welcome message 包含dzetsaka的文档、数据集下载地址和如何安装scikit-learn

2、classification dock,包含工具的分类使用

3、settings,包含模型的选择

四、打开welcome message菜单,下载样例数据,点击down out demonstration dataset即可

8a02294c507d69878786a541b8ff227c.png

下载完成后的目录结构,包括一个6M多的tif影像和一组shp矢量文件

8e966006c931fdb439cbc3903cc11471.png

五、打开demo_dzetsaka工程,可以看到tif影像和标注的结果

8c2d426c73bad9b8973242397062c4e6.png

六、打开setting进行分类器选择

33621911764afdd26a6e976678df56ef.png

七、打开classification dock,选择影像和矢量文件,Class为分类的字段,可以点击Classfication Leave empty for temporary file后的按钮,设置输出文件路径和名称,其下的图标也可以设置分类器,然后点击Perform the classification执行。

b074e57a980a50869d091dcb048746e2.png

八、经过一小时的等待,会输出以下的tif文件

0ab813ddd9b5d77207501beca499f1a9.png

九、对输出的结果进行设置,选择Singleband psoudocolor,因为训练集有五个类别,在这里设置6个类别即可,用不同颜色进行区分

ba64f05d6a90ec303e7abd7d6de7643a.png

十、格式化后的显式结果如下,再对照原图,结果基本还是可信的。

7fb643eb1980e1b297a4fe2ed1c5b6ad.png

十一、随机森林分类后再格式化的结果如下:

d8f28800042888f8ed7f7ef6c4ca6dfc.png

十一、K近邻分类后再格式化的结果如下:

740f573f550af97df547c9e088304ce5.png

十一、高斯混合分类后再格式化的结果如下:

721abc07f2cea66d19b29d3a02900c0a.png

后面开始尝试在真正的地图上进行分类,不过太大了,已经运行一天一夜还是未运行出结果。。。

最后欢迎关注公众号:python与大数据分析

b5c30fef9253a55130c3e24ad528c31f.jpeg

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python与大数据分析

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值