神经网络参数初始化问题:可以初始化成0或者其他同一值么

答案:不可以

问题:可以初始化成0或者其他同一值么?之前想着虽然原始值一样,但是导数应该不一样啊,还是会正常更新梯度的,但细想想还是错误的。

目录

1. 参数初始化为0的问题

2. 对称权重更新的问题

3. 参数的导数问题

4. 建议的参数初始化方法

神经网络参数初始化方法的实现

1. 随机初始化

2. Xavier初始化

3. He初始化


1. 参数初始化为0的问题

在神经网络中,如果所有参数(权重)都初始化为0,那么在反向传播过程中,所有的权重都会更新为相同的值,这种现象被称为对称权重更新。这是因为,当所有权重都相同时,每个神经元在前向传播和反向传播中都会计算出相同的值,因此在反向传播过程中,所有的权重都会收到相同的更新。

2. 对称权重更新的问题

对称权重更新会导致神经网络的每个神经元都学习到相同的特征,这样就失去了多个神经元并行学习不同特征的优势,大大限制了神经网络的表达能力。因此,我们通常会随机初始化神经网络的参数,以打破对称性,使每个神经元可以学习到不同的特征。

3. 参数的导数问题

虽然每个参数的导数理论上应该不一样,但这是在参数值不同的情况下。当所有参数都初始化为0时,由于神经元计算出的值都相同,所以在反向传播过程中,每个参数的导数也都会相同,从而导致所有参数的更新也相同,这就是对称权重更新的问题。

因此在神经网络中,将所有参数都初始化为0是不可取的。在反向传播过程中,所有的权重都会更新为相同的值,这会导致神经网络的每一层在每一次迭代中都是对称的,也就是说,每一层的所有节点都会学习到相同的特征。这种情况下,无论神经网络有多少层,多少个节点,其学习能力都只相当于一个单一节点的神经网络,大大限制了神经网络的表达能力。

4. 建议的参数初始化方法

通常,我们会使用一些随机方法来初始化神经网络的参数,以打破对称性,使得每个神经元可以学习到不同的特征。常用的初始化方法有:

  • 随机初始化:参数值从一个均匀分布或者正态分布中随机抽取。这种方法可以打破对称性,但是如果参数值过大或过小,可能会导致学习过程中的梯度消失或者梯度爆炸问题。

  • Xavier初始化:根据输入节点和输出节点的数量来确定参数值的分布范围,可以在一定程度上解决梯度消失和梯度爆炸问题。

  • He初始化:类似于Xavier初始化,但是它假设网络的激活函数是ReLU函数,因此在某些情况下,可能比Xavier初始化效果更好。

神经网络参数初始化方法的实现

1. 随机初始化

在Python中,我们可以使用numpy库的random.uniformrandom.normal函数来实现参数的随机初始化。以下是一个例子:

import numpy as np

# 假设我们有10个输入节点和5个输出节点
input_nodes = 10
output_nodes = 5

# 使用均匀分布进行随机初始化
weights = np.random.uniform(low=-1, high=1, size=(input_nodes, output_nodes))

# 使用正态分布进行随机初始化
weights = np.random.normal(loc=0, scale=1, size=(input_nodes, output_nodes))

在PyTorch中,我们可以使用torch.nn.init.uniform_torch.nn.init.normal_来实现随机初始化:

import torch
import torch.nn as nn

# 假设我们有一个线性层
linear = nn.Linear(10, 5)

# 使用均匀分布进行随机初始化
nn.init.uniform_(linear.weight)

# 使用正态分布进行随机初始化
nn.init.normal_(linear.weight)
2. Xavier初始化

Xavier初始化的思想是保持输入和输出的方差一致,避免反向传播过程中梯度过大或过小。在Python中,我们可以使用numpy库的random.normal函数来实现Xavier初始化:

import numpy as np

# Xavier初始化
weights = np.random.normal(loc=0, scale=np.sqrt(1./input_nodes), size=(input_nodes, output_nodes))

在PyTorch中,我们可以使用torch.nn.init.xavier_uniform_或 torch.nn.init.xavier_normal_来实现Xavier初始化:

import torch
import torch.nn as nn

# 假设我们有一个线性层
linear = nn.Linear(10, 5)

# 使用Xavier均匀分布初始化
nn.init.xavier_uniform_(linear.weight)

# 使用Xavier正态分布初始化
nn.init.xavier_normal_(linear.weight)
3. He初始化

He初始化的思想是保持ReLU激活函数的输入和输出的方差一致,避免反向传播过程中梯度过大或过小。在Python中,我们可以使用numpy库的random.normal函数来实现He初始化:

import numpy as np

# He初始化
weights = np.random.normal(loc=0, scale=np.sqrt(2./input_nodes), size=(input_nodes, output_nodes))

以上代码中,input_nodesoutput_nodes分别代表输入节点和输出节点的数量,weights是初始化的权重矩阵。

在PyTorch中,我们可以使用torch.nn.init.kaiming_uniform_torch.nn.init.kaiming_normal_来实现He初始化:

import torch
import torch.nn as nn

# 假设我们有一个线性层
linear = nn.Linear(10, 5)

# 使用He均匀分布初始化
nn.init.kaiming_uniform_(linear.weight, nonlinearity='relu')

# 使用He正态分布初始化
nn.init.kaiming_normal_(linear.weight, nonlinearity='relu')

以上代码中,linear是一个线性层,其权重将被初始化。注意,这些初始化函数都是就地操作,也就是说,它们会直接修改传入的张量。

  • 7
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

samoyan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值