线性代数公式大赏

向量

概念公式
n维向量n个数组成的有序数组,记作 x ⃗ \vec x x ,行向量 x ⃗ T = ( x 1 , x 2 , ⋯ , x n ) \vec x^T=(x_1,x_2,⋯,x_n) x T=(x1,x2,,xn),列向量 x ⃗ = [ x 1 x 2 ⋯ x n ] \vec x=\begin{bmatrix}x_1\\x_2\\⋯\\x_n\end{bmatrix} x = x1x2xn
零向量所有分量都为零的向量,记作 0 ⃗ \vec 0 0
向量的模 │ α ⃗ │ = α ⃗ T α ⃗ │\vecα│=\vecα^T\vecα α =α Tα
单位向量 n ⃗ = α ⃗ │ α ⃗ │ ‾ , │ n ⃗ │ = 1 \vec n=\begin{matrix}\vecα\\\overline{│\vecα│}\end{matrix},│\vec n│=1 n =α α ,n =1
向量加法 α ⃗ + β ⃗ = ( a 1 + b 1 , a 2 + b 2 , a 3 + b 3 , ⋯ ) \vecα+\vecβ=(a_1+b_1,a_2+b_2,a_3+b_3,⋯) α +β =(a1+b1,a2+b2,a3+b3,)
向量的数乘 k α ⃗ = ( k a 1 , k a 2 , k a 3 , ⋯ ) k\vecα=(ka_1,ka_2,ka_3,⋯) kα =(ka1,ka2,ka3,)
向量的线性性 k ( α ⃗ + β ⃗ ) = k α ⃗ + k β ⃗ k(\vecα+\vecβ)=k\vecα+k\vecβ k(α +β )=kα +kβ ( k 1 + k 2 ) α ⃗ = k 1 α ⃗ + k 2 α ⃗ (k_1+k_2)\vecα=k_1\vecα+k_2\vecα (k1+k2)α =k1α +k2α ( k 1 k 2 ) α ⃗ = k 1 ( k 2 α ⃗ ) (k_1k_2)\vecα=k_1(k_2\vecα) (k1k2)α =k1(k2α )
正交向量 α ⃗ ⋅ β ⃗ = 0 \vecα·\vecβ=0 α β =0
施密特正交化线性无关向量组A⇒ { β ⃗ 1 = α ⃗ 1 β ⃗ 2 = α ⃗ 2 − α ⃗ 2 ⋅ β ⃗ 1 ‾ β 1 ⋅ β ⃗ 1 ⋅ β ⃗ 1 β ⃗ 3 = α ⃗ 3 − α ⃗ 3 ⋅ β ⃗ 1 ‾ β 1 ⋅ β ⃗ 1 ⋅ β ⃗ 1 − α ⃗ 3 ⋅ β ⃗ 2 ‾ β 2 ⋅ β ⃗ 2 ⋅ β ⃗ 2 ⋯ \left\{\begin{matrix}\vecβ_1=\vecα_1\\\vecβ_2=\vecα_2-\begin{matrix}\underline{\vecα_2·\vecβ_1}\\β_1·\vecβ_1\end{matrix}·\vecβ_1\\\vecβ_3=\vecα_3-\begin{matrix}\underline{\vecα_3·\vecβ_1}\\β_1·\vecβ_1\end{matrix}·\vecβ_1-\begin{matrix}\underline{\vecα_3·\vecβ_2}\\β_2·\vecβ_2\end{matrix}·\vecβ_2\\⋯\end{matrix}\right. β 1=α 1β 2=α 2α 2β 1β1β 1β 1β 3=α 3α 3β 1β1β 1β 1α 3β 2β2β 2β 2⇒正交向量组B
施密特单位正交化在施密特正交化之后上把每一向量除以它的模
正交矩阵行向量和列向量都是单位向量,且行向量和列向量都两两正交的方阵,也称规范正交基
正交矩阵的性质A是正交矩阵⇔AT=A-1⇒│A│=±1;A,B是同阶正交矩阵⇒AB,BA都是正交矩阵
正交变换求正交矩阵P,使PTAP=Λ

方程

概念公式
向量组行向量组A= [ α ⃗ 1 T α ⃗ 2 T ⋯ α ⃗ m T ] \begin{bmatrix}\vecα_1^T\\\vecα_2^T\\⋯\\\vecα_m^T\end{bmatrix} α 1Tα 2Tα mT ;列向量组A= [ α ⃗ 1 , α ⃗ 2 , ⋯ , α ⃗ n ] [\vecα_1,\vecα_2,⋯,\vecα_n] [α 1,α 2,,α n]
线性表示 β ⃗ = k 1 α ⃗ 1 + k 2 α ⃗ 2 + ⋯ + k n α ⃗ n \vecβ=k_1\vecα_1+k_2\vecα_2+⋯+k_n\vecα_n β =k1α 1+k2α 2++knα n
向量组线性表出若向量组B中的每个向量都可被向量组A线性表出,则B可被A线性表出
线性相关 k 1 α ⃗ 1 + k 2 α ⃗ 2 + ⋯ + k n α ⃗ n = 0 ⃗ k_1\vecα_1+k_2\vecα_2+⋯+k_n\vecα_n=\vec0 k1α 1+k2α 2++knα n=0 ,各系数不全为0⇒向量组线性相关
线性无关仅当各系数全为0时, k 1 α ⃗ 1 + k 2 α ⃗ 2 + ⋯ + k n α ⃗ n = 0 ⃗ ⇒ k_1\vecα_1+k_2\vecα_2+⋯+k_n\vecα_n=\vec0⇒ k1α 1+k2α 2++knα n=0 向量组线性无关
极大线性无关组向量组A中线性无关且能线性表出A中任一向量的子向量组
向量组的秩向量组的极大线性无关组所含向量的个数
等价向量组可以互相线性表出的两个向量组,记作A≌B
齐次线性方程组 { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = 0 \left\{\begin{matrix}a_{11}x_1+a_{12}x_2+⋯+a_{1n}x_n=0&\\a_{21}x_1+a_{22}x_2+⋯+a_{2n}x_n=0\\⋯\\a_{m1}x_1+a_{m2}x_2+⋯+a_{mn}x_n=0\end{matrix}\right. a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0am1x1+am2x2++amnxn=0 A x ⃗ = 0 ⃗ A\vec x=\vec0 Ax =0
基础解系 α ⃗ 1 , α ⃗ 2 , ⋯ , α ⃗ n − r \vecα_1,\vecα_2,⋯,\vecα_{n-r} α 1,α 2,,α nr线性无关,且能线性表出方程组的任一通解
齐线方程组的解 x ⃗ = k 1 α ⃗ 1 + k 2 α ⃗ 2 + ⋯ + k n − r α ⃗ n − r \vec x=k_1\vecα_1+k_2\vecα_2+⋯+k_{n-r}\vecα_{n-r} x =k1α 1+k2α 2++knrα nr,ki为系数, α ⃗ i \vecα_i α i为基础解系
非齐次线性方程组 { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b n \left\{\begin{matrix}a_{11}x_1+a_{12}x_2+⋯+a_{1n}x_n=b_1&\\a_{21}x_1+a_{22}x_2+⋯+a_{2n}x_n=b_2\\⋯\\a_{m1}x_1+a_{m2}x_2+⋯+a_{mn}x_n=b_n\end{matrix}\right. a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bn A x ⃗ = b ⃗ A\vec x=\vec b Ax =b
非齐线方程组的解 x ⃗ = k 1 α ⃗ 1 + k 2 α ⃗ 2 + ⋯ + k n − r α ⃗ n − r + η ⃗ \vec x=k_1\vecα_1+k_2\vecα_2+⋯+k_{n-r}\vecα_{n-r}+\vecη x =k1α 1+k2α 2++knrα nr+η ,ki为系数, α ⃗ i \vecα_i α i为基础解系, η ⃗ \vecη η 为特解
非齐线方程组特性r(A)≠r(A┆ b ⃗ \vec b b )时无解,r(A)=r(A┆ b ⃗ \vec b b )<n时有无数解,r(A)=r(A┆ b ⃗ \vec b b )=n时有唯一解

行列式·矩阵

概念公式
行列式交换律行列式中相邻两行/列互换,行列式的值变号一次
行列式结合律行列式中一行/列的公因子可提到行列式外面
行列式分配律 ∣ ⋯ a i 1 + b i 1 a i 2 + b i 2 ⋯ a i n + b i n ⋯ ∣ = ∣ ⋯ a i 1 a i 2 ⋯ a i n ⋯ ∣ + ∣ ⋯ b i 1 b i 2 ⋯ b i n ⋯ ∣ \begin{vmatrix}&⋯\\a_{i1}+b_{i1}&a_{i2}+b_{i2}&⋯&a_{in}+b_{in}\\&⋯\end{vmatrix}=\begin{vmatrix}&⋯\\a_{i1}&a_{i2}&⋯&a_{in}\\&⋯\end{vmatrix}+\begin{vmatrix}&⋯\\b_{i1}&b_{i2}&⋯&b_{in}\\&⋯\end{vmatrix} ai1+bi1ai2+bi2ain+bin = ai1ai2ain + bi1bi2bin
行列式叠加性把行列式中某一行/列的k倍加到另一行/列上,行列式的值不变
行列式展开性按第i行或第j列展开:|A| = ∑ k = 1 m a i k A i k = ∑ k = 1 n a k j A k j =∑_{k=1}^ma_{ik}A_{ik}=∑_{k=1}^na_{kj}A_{kj} =k=1maikAik=k=1nakjAkj
行列式特性|kA|=kn|A|,|AB|=|A|·|B|,|A-1|=|A|-1,|AT|=|A|
顺序主子式i阶顺序主子式 D i = ∣ a 11 a 12 ⋯ a 1 i a 21 a 22 ⋯ a 2 i ⋯ a i 1 a i 2 ⋯ a i i ∣ D_i=\begin{vmatrix}a_{11}&a_{12}&⋯&a_{1i}\\a_{21}&a_{22}&⋯&a_{2i}\\⋯\\a_{i1}&a_{i2}&⋯&a_{ii}\end{vmatrix} Di= a11a21ai1a12a22ai2a1ia2iaii
余子式Mij将|A|的第i行和第j列元素去掉后剩余行列式的值
代数余子式AijAij=(-1)i+jMij
克拉默法则 A x ⃗ = b ⃗ A\vec x=\vec b Ax =b ,A可逆 ⇒ x ⃗ j = │ A i │ ‾ │ A │ ⇒\vec x_j=\begin{matrix}\underline{│A_i│}\\│A│\end{matrix} x j=AiA,|Ai|为|A|的第i列换成 b ⃗ \vec b b 所得
k阶子式A中某k行和k列的k2个交叉点处的元素按A中相应顺序所组成的矩阵
伴随矩阵A*将A的aij皆用Aji代替后所得的矩阵,且有A-1= A ∗ │ A │ ‾ \begin{matrix}A^*\\\overline{│A│}\end{matrix} AA或A*=│A│A-1
逆矩阵A-1满足AA-1=A-1A=E的唯一的满秩方阵
矩阵的逆1(A-1)-1=A,(A-1)T=(AT)-1,(kA)-1= 1 k \frac{1}k k1A-1,(AB)-1=B-1A-1
矩阵的逆2A可逆⇔|A|≠0,A满秩,行/列向量组线性无关,λi≠0,Ax=0仅有零解,Ax=b有唯一解
求逆矩阵硬凑;A-1= A ∗ │ A │ ‾ \begin{matrix}A^*\\\overline{│A│}\end{matrix} AA;通过初等行变换把增广矩阵(A┆E)变为(E┆A-1)
伴随特性(AB)*=B* A*,(Ak)*=(A*)k,(A-1)*=(A*)-1,(AT)*=(A*)T
零矩阵O所有元素都为0的方阵
方阵行数等于列数的矩阵
单位矩阵E主对角元素都为1,其他元素都为0的方阵,AE=EA=A
数量矩阵λE主对角元素都为λ,其他元素都为0的方阵
对角矩阵Λ非主对角元素都为0的方阵
上/下三角阵◥/◣主对角元素下/上方的元素全为0的方阵
转置矩阵AT所有元素沿主对角线翻转所得的方阵
对称矩阵满足AT=A的方阵
反对称矩阵满足AT+A=O的方阵
阶梯矩阵后一行元素比前一行少,且非零区域靠右对齐的矩阵
矩阵加法A+B=B+A,(A+B)+C=A+(B+C),A+O=A
矩阵数乘kA=A的每个元素乘k;k(A+B)=kA+kB,(k1+k2)A=k1A+k2A,k1k2A=k1(k2A),1A=A,0A=O
矩阵乘法A(B+C)=AB+AC,(A+B)C=AC+BC,(AB)C=A(BC),矩阵相乘的顺序不能交换
矩阵转置(AT)T=A,(kA)T=kAT,(A+B)T=AT+BT,(AB)T=BTAT
矩阵的幂A0=E,AaAb=Aa+b,(Aa)b=Aab
逆零性A可逆,AB=O或BA=O⇒B=O
初等变换交换矩阵的某两行/列;将某行/列的元素都乘以k;将某一行/列的k倍加到另一行/列上
初等矩阵E经过一次初等变换所得的矩阵
初等替身矩阵左(右)乘一个初等矩阵相当于作一次相应的初等行(列)变换
分块矩阵井分块:形如 [ A B C D ] \begin{bmatrix}A&B\\C&D\end{bmatrix} [ACBD];行分块:Am×n= ( α ⃗ 1 , α ⃗ 2 , α ⃗ 3 , ⋯ , α ⃗ m ) T (\vecα_1,\vecα_2,\vecα_3,⋯,\vecα_m)^T (α 1,α 2,α 3,,α m)T;列分块:Am×n= ( β ⃗ 1 , β ⃗ 2 , β ⃗ 3 , ⋯ , β ⃗ n ) (\vecβ_1,\vecβ_2,\vecβ_3,⋯,\vecβ_n) (β 1,β 2,β 3,,β n)
分方块行列式 ∣ A C O B ∣ = ∣ A O C B ∣ = ∣ A O O B ∣ \begin{vmatrix}A&C\\O&B\end{vmatrix}=\begin{vmatrix}A&O\\C&B\end{vmatrix}=\begin{vmatrix}A&O\\O&B\end{vmatrix} AOCB = ACOB = AOOB =│A│⋅│B│; ∣ C A B O ∣ = ∣ O A B C ∣ = ∣ O A B O ∣ \begin{vmatrix}C&A\\B&O\end{vmatrix}=\begin{vmatrix}O&A\\B&C\end{vmatrix}=\begin{vmatrix}O&A\\B&O\end{vmatrix} CBAO = OBAC = OBAO =(-1)mn│Am│·│Bn
分块矩阵加 [ A 1 B 1 C 1 D 1 ] \begin{bmatrix}A_1&B_1\\C_1&D_1\end{bmatrix} [A1C1B1D1]+ [ A 2 B 2 C 2 D 2 ] = [ A 1 + A 2 B 1 + B 2 C 1 + C 2 D 1 + D 2 ] \begin{bmatrix}A_2&B_2\\C_2&D_2\end{bmatrix}=\begin{bmatrix}A_1+A_2&B_1+B_2\\C_1+C_2&D_1+D_2\end{bmatrix} [A2C2B2D2]=[A1+A2C1+C2B1+B2D1+D2]
分块矩阵乘 [ A 1 B 1 C 1 D 1 ] \begin{bmatrix}A_1&B_1\\C_1&D_1\end{bmatrix} [A1C1B1D1]· [ A 2 B 2 C 2 D 2 ] = [ A 1 A 2 + B 1 C 2 A 1 B 2 + B 1 D 2 A 2 C 1 + C 2 D 1 B 2 C 1 + D 1 D 2 ] \begin{bmatrix}A_2&B_2\\C_2&D_2\end{bmatrix}=\begin{bmatrix}A_1A_2+B_1C_2&A_1B_2+B_1D_2\\A_2C_1+C_2D_1&B_2C_1+D_1D_2\end{bmatrix} [A2C2B2D2]=[A1A2+B1C2A2C1+C2D1A1B2+B1D2B2C1+D1D2]
分块矩阵转置 [ A B C D ] T = [ A T C T B T D T ] \begin{bmatrix}A&B\\C&D\end{bmatrix}^T=\begin{bmatrix}A^T&C^T\\B^T&D^T\end{bmatrix} [ACBD]T=[ATBTCTDT]
分块矩阵的逆 [ A O O B ] − 1 = [ A − 1 O O B − 1 ] \begin{bmatrix}A&O\\O&B\end{bmatrix}^{-1}=\begin{bmatrix}A^{-1}&O\\O&B^{-1}\end{bmatrix} [AOOB]1=[A1OOB1] [ O A B O ] − 1 = [ O B − 1 A − 1 O ] \begin{bmatrix}O&A\\B&O\end{bmatrix}^{-1}=\begin{bmatrix}O&B^{-1}\\A^{-1}&O\end{bmatrix} [OBAO]1=[OA1B1O]
分块矩阵的幂 [ A O O B ] n = [ A n O O B n ] \begin{bmatrix}A&O\\O&B\end{bmatrix}^n=\begin{bmatrix}A^n&O\\O&B^n\end{bmatrix} [AOOB]n=[AnOOBn]
秩/r矩阵中最高阶非零子式的阶数,或相应阶梯矩阵中非全零行的个数
迹/tr矩阵主对角线元素之和
秩的特性10≤r(Am×n)≤\min(m,n);r(A)=r(AT);r(A+B)≤r(A)+r(B)
秩的特性2A可逆⇒r(AB)=r(BA)=r(B);Am×nBn×p=O⇒r(A)+r(B)≤n
特征值/特征向量 A x ⃗ = λ x ⃗ A\vec x=λ\vec x Ax =λx ( λ E − A ) x ⃗ = 0 ⃗ (λE-A)\vec x=\vec0 (λEA)x =0 x ⃗ ≠ 0 ⃗ \vec x≠\vec0 x =0 ,则λ为A的特征值, x ⃗ \vec x x 为A的特征向量
特征方程|λE-A|=0,常用于求特征值
特征多项式特征方程中|λE-A|的展开式
特征值特性∑λi=tr(A),∏λi=|A|
特征值的对应A→λ,AT→λ,kA→kλ,Ak→λk,f多项式(A)→f多项式(λ),A-1→λ-1,A*→|λ|λ-1
特征向量特性互不相等的特征值对应的特征向量线性无关;属于某一特征值的线性无关的特征向量的个数不超过该特征值的重数
特征幂次性Ak=A ⇒ λiki ⇒ λi=0或1;Ak=O ⇒ λi=0
等价矩阵若PAQ=B(或A能经有限次初等变换变为B),P、Q可逆,则A与B等价,记作 A ≌ B A≌B AB
等价特性A≌A;A≌B ⇔ B≌A ⇔ r(A)=r(B);A≌B,B≌C ⇒ A≌B
相似矩阵若P-1AP=B(或AP=PB),P可逆,则A与B相似,记作A~B
相似特性A~A;A~B ⇔ B~A;A~B,B~C ⇒ A~C;AP=PB,BQ=QC ⇒ APQ=PBQ=PQC
相似同特征值性A~B ⇒ λaibi
相似特性1A~B ⇒ r(A)=r(B),tr(A)=tr(B),|A|=|B|
相似特性2A~B ⇒ AT~BT;A-1~B-1;A*~B*;aA±bE~aB±bE;Ak~Bk;AB~BA
相似可对角化A可相似对角化 ⇔ A有n个线性无关的特征向量 ⇔ P-1AP=Λ=diag(λ12,⋯,λn)
相似对角化法先求特征值,再求对应特征向量的基础解系 α ⃗ i \vecα_i α i,基础解系向量组即为P
相似对角特性可对角化矩阵中属于同一特征值的特征向量的基础解系的个数等于特征值的重数
对称正交性实对称矩阵中,属于不同特征值的特征向量相互正交,属于同一多重特征值的向量之间可施密特至正交
对称可对角化∀对称实矩阵A,∃正交矩阵P,P-1AP=PTAP=Λ=diag(λ12,⋯,λ_n),常用于求标准二次型
对称对角步骤先求特征值,再求对应特征向量的基础解系 α ⃗ i \vecα_i α i,则基础解系施密特单位正交化所得向量组即为P
二次型 f = [ x 1 , x 2 , ⋯ , x n ] [ a 11 a 12 ⋯ a 21 a 22 ⋯ ⋯ ⋯ a n n ] [ x 1 x 2 ⋯ x n ] = x ⃗ T A x ⃗ f=\begin{bmatrix}x_1,x_2,⋯,x_n\end{bmatrix}\begin{bmatrix}a_{11}&a_{12}&⋯\\a_{21}&a_{22}&⋯\\⋯&⋯&a_{nn}\end{bmatrix}\begin{bmatrix}x_1\\x_2\\⋯\\x_n\end{bmatrix}=\vec x^TA\vec x f=[x1,x2,,xn] a11a21a12a22ann x1x2xn =x TAx
标准二次型f=a11x12+a22x22+⋯annxn2=xTΛx
求标准二次型先求特征值,再求特征向量,其基础解系组P使P-1AP=Λ,也可用施密特和配方法
规范二次型标准二次型中正系数变为1,负系数变为-1,零不变
惯性定理正(负)惯性指数等于二次型中不同正(负)特征值的个数
合同矩阵若PTAP=B,P可逆,则A与B合同,记作A≃B
合同特性A≃A;A≃B⇔B≃A;A≃B,B≃C⇒A≃C
合同充要条件实对称矩阵A ∼ ∼ B⇒A≃B⇔二次型xTAx与xTBx有相同的正负惯性指数
正定二次型 ∀ x ⃗ ≠ 0 ⃗ , x ⃗ T A x ⃗ > 0 ∀\vec x≠\vec0,\vec x^TA\vec x>0 x =0 ,x TAx >0,或 λi>0的二次型, A=PTP(P可逆), A的各阶顺序主子式大于零
正定特性A,B是正定矩阵⇒aii>0,│A│>0,A+B、Ak、A-1、A*是正定矩阵
  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值