【Pytorch实战--卷积层】

部署运行你感兴趣的模型镜像

卷积层


PyTorch + TensorBoard 可视化

本示例通过一个简单的卷积神经网络 ,演示了如何使用 PyTorch 加载图像数据、执行前向传播,并使用 TensorBoard 可视化输入和输出图像。


引入所需的库
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torch.utils.data import DataLoader

数据加载与预处理
# 图像预处理:缩放为 224x224,并转为张量
data_transforms = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor()
])

# 加载数据集,root 文件夹需符合 ImageFolder 的结构规范
dataset = torchvision.datasets.ImageFolder(
    root=r'D:/My_Work/StudyDeepLearning/day3_code/dataset/test',
    transform=data_transforms
)

# 使用 DataLoader 批量加载数据,batch_size 为 32,打乱顺序
dataloader = DataLoader(dataset=dataset, batch_size=32, shuffle=True)

定义网络结构
class TuDui(nn.Module):
# 定义了一个自定义神经网络模型类 TuDui,继承自 PyTorch 的 nn.Module
    def __init__(self):
    # 构造函数中先调用父类构造函数,初始化 nn.Module 的内部结构
        super(TuDui, self).__init__()
        # 定义一个卷积层:输入通道3(RGB),输出通道6,卷积核大小3x3
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    def forward(self, x):
        # 调用卷积层执行前向传播
        x = self.conv1(x)
        return x

创建模型实例并打印结构
tudui = TuDui()
print(tudui)  # 输出模型结构,用于检查网络定义是否正确

使用 TensorBoard SummaryWriter 可视化结果
writer = SummaryWriter("logs")  # 创建日志目录 logs/
step = 0  # 步数计数器

遍历数据集并前向传播
for data in dataloader:
    imgs, label = data  # 获取一批图片和标签
    output = tudui(imgs)  # 前向传播,得到输出特征图

    # 打印输入和输出的张量维度
    print(imgs.shape)      # [32, 3, 224, 224]
    print(output.shape)    # [32, 6, 222, 222],因为卷积减少了2个像素(padding=0, kernel=3)

    # 可视化输入图像(最多3通道)
    writer.add_images("input", imgs, step)

    # 为了可视化输出(6通道),这里只选择其中3个通道重新 reshape
    output = torch.reshape(output, (-1, 3, 222, 222))  # 每次最多3通道可显示
    writer.add_images("label", output, step)

    step += 1

关闭 SummaryWriter
writer.close()

之后可在命令行中使用以下命令打开 TensorBoard:

tensorboard --logdir=logs

小结

在这里插入图片描述

您可能感兴趣的与本文相关的镜像

PyTorch 2.9

PyTorch 2.9

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值