机器学习笔记 - AutoML框架FLAML初体验

本文介绍了微软的轻量级自动化机器学习库FLAML,它能自动、高效地找到合适的机器学习模型。通过简单的代码示例展示了如何安装、使用FLAML,并在Kaggle的数据集上进行测试,展示其在限定时间和资源下实现模型训练的能力。
摘要由CSDN通过智能技术生成

一、概述

        AutoML在近年来的各类机器学习和Kaggle比赛中层出不穷,明显是机器学习的一个趋势,自动化机器学习提供了方法和流程,使机器学习可供非机器学习专家使用,以提高机器学习的效率并加速机器学习的研究。

        FLAML是今年由微软主推的一个全新的高效轻量级自动化机器学习框架。

        FLAML 是一个轻量级的 Python 库,可自动、高效且经济地找到准确的机器学习模型。它使用户不必为每个学习者选择学习者和超参数。

        对于分类和回归等常见的机器学习任务,它可以快速找到计算资源较少的用户提供数据的质量模型。它支持经典机器学习模型和深度神经网络。

        它很容易定制或扩展。用户可以从一个平滑的范围内找到他们想要的可定制性:最小定制(计算资源预算)、中等定制(例如,scikit 风格的学习器、搜索空间和度量)或完全定制(任意训练和评估代码)。

        它支持快速自动调优,能够处理复杂的约束/指导/提前停止。FLAML 由 Microsoft Research 发明的一种新的、具有成本效益的超参数优化和学习器选择方法提供支持。

        另外FLAML 还具有来自Visual Studio 2022中的ML.NET Model Builder的.NET 实现。

二、安装和使用简介

1、安装

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值