机器学习笔记 - HaGRID—手势识别图像数据集简介

本文介绍了HaGRID,一个包含552,992个样本的大型手势识别数据集,用于构建人机交互系统。数据集包括18种功能性手势和一个“无手势”类,具有高分辨率、场景多样性,并考虑了年龄、性别等因素。HaGRID不仅适用于手势分类,还可用于手部检测和二元分类任务,为手势识别系统提供强大支持。" 133256896,20036203,SQLite3数据库操作与MySQL迁移指南,"['SQLite', 'MySQL', '数据库']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        在本文中,我们介绍了一个用于手势识别(HGR)系统的庞大数据集 Ha-GRID(HAnd Gesture Recognition Image Dataset)。该数据集包含 552,992 个样本,分为 18 类手势。注释由带有手势标签的手的边界框和领先手的标记组成。提议的数据集允许构建 HGR 系统,该系统可用于视频会议服务、家庭自动化系统、汽车行业、为有语言和听力障碍的人提供的服务等。我们特别关注与设备的交互以管理它们。这就是为什么选择的所有 18 个手势都是功能性的、大多数人熟悉的,并且可能是采取某些行动的动力。此外,我们使用众包平台收集数据集并考虑各种参数以确保数据的多样性。我们描述了为我们的任务使用现有 HGR 数据集的挑战,并提供了它们的详细概述。此外,还提出了手部检测和手势分类任务的基线。HaGRID 和预训练模型是公开可用的。

        手势在人类交流中的使用起着重要作用:手势可以在情感上强化陈述或完全取代它们。 更重要的是,手势识别(HGR)可以成为人机交互的一部分。 此类系统在汽车领域、家庭自动化系统、各种视频/流媒体平台(Zoom、Skype、Discord、Jazz 等)等领域具有广泛的实际应用。 此外,该系统还可以成为活跃手语用户(听力和语言障碍者)的虚拟助手或服务的一部分。 这些区域要求系统在线工作,并且对背景、场景、主题和照明条件具有鲁棒性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值