在本文中,我们介绍了一个用于手势识别(HGR)系统的庞大数据集 Ha-GRID(HAnd Gesture Recognition Image Dataset)。该数据集包含 552,992 个样本,分为 18 类手势。注释由带有手势标签的手的边界框和领先手的标记组成。提议的数据集允许构建 HGR 系统,该系统可用于视频会议服务、家庭自动化系统、汽车行业、为有语言和听力障碍的人提供的服务等。我们特别关注与设备的交互以管理它们。这就是为什么选择的所有 18 个手势都是功能性的、大多数人熟悉的,并且可能是采取某些行动的动力。此外,我们使用众包平台收集数据集并考虑各种参数以确保数据的多样性。我们描述了为我们的任务使用现有 HGR 数据集的挑战,并提供了它们的详细概述。此外,还提出了手部检测和手势分类任务的基线。HaGRID 和预训练模型是公开可用的。
手势在人类交流中的使用起着重要作用:手势可以在情感上强化陈述或完全取代它们。 更重要的是,手势识别(HGR)可以成为人机交互的一部分。 此类系统在汽车领域、家庭自动化系统、各种视频/流媒体平台(Zoom、Skype、Discord、Jazz 等)等领域具有广泛的实际应用。 此外,该系统还可以成为活跃手语用户(听力和语言障碍者)的虚拟助手或服务的一部分。 这些区域要求系统在线工作,并且对背景、场景、主题和照明条件具有鲁棒性。