机器学习笔记 基于CNN+OpenCV的人脸活体检测

本文介绍了一种使用CNN结合OpenCV进行人脸活体检测的方法,通过纹理、运动和生命体征分析来区分真脸和假脸。文章详细阐述了数据收集、创建数据集、网络构建、训练过程以及将模型应用于实时视频的过程,旨在理解活体检测的基本思路,为解决类似问题提供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、活体检测

        如果一个用户可以尝试举起另一个人的照片。也许他们的智能手机上甚至有一张照片或视频,可以拿着负责进行人脸识别的相机。在这种情况下,摄像头上的人脸完全有可能被正确识别……但最终会导致未经授权的用户绕过人脸识别系统。

        如何识别真脸和假脸?大致分运动、纹理和生命体征几个方向。

        另外活体检测有多种方法,包括:

        纹理分析,包括在人脸区域计算局部二元模式(LBP),并用SVM将人脸分类为真实人脸或伪造人脸。

        频率分析,例如检查面部的傅立叶域。

        可变聚焦分析,例如检查两个连续帧之间像素值的变化。

        基于启发式的算法,包括眼球运动、嘴唇运动和眨眼检测。这组算法试图跟踪眼球运动和眨眼,以确保用户不会拿着另一个人的照片(因为照片不会眨眼或移动嘴唇)。

        光流算法,即检查从3D对象和2D平面生成的光流的差异和财产。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值