SVD奇异值分解

概述

SVD应用:
1.用于数据降维、压缩和去噪;
2.用于PCA降维;
3.推荐系统、自然语言处理等。

SVD诞生:
Ax=λx,对A进行特征值分解A=WΣWT要求A必须为方阵、实对称矩阵(即A=AT),如果A不是方阵,SVD可以对矩阵A进行分解。

定义

在这里插入图片描述

求解过程

在这里插入图片描述

本质解析

在这里插入图片描述
在这里插入图片描述

图像压缩案例

import numpy as np
import cv2
import matplotlib.pyplot as plt

path = 'lena.jpg'
data = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
data = np.mat(data)  # 需要mat处理后才能在降维中使用矩阵的相乘
U, sigma, VT = np.linalg.svd(data)
count = 20  # 选择前20个奇异值

dig = np.diag(sigma[:count])  # 获得对角矩阵
redata = U[:, :count] * dig * VT[:count, :]  # 重构后的数据

plt.imshow(data, cmap='gray')
plt.title("origin")
plt.show()
plt.imshow(redata, cmap='gray')
plt.title("SVD")
plt.show()

原图(400*500=200000)、
30个奇异值:(400+1+500)*30 = 27030,压缩比:200000/27020=7.4倍
20个奇异值:(400+1+500)*20 = 18020,压缩比:200000/18020=11.1倍
压缩效果对比,可以看出当奇异值越大时,它代表的信息越多,还原数据更真实。
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值