概述
SVD应用:
1.用于数据降维、压缩和去噪;
2.用于PCA降维;
3.推荐系统、自然语言处理等。
SVD诞生:
Ax=λx,对A进行特征值分解A=WΣWT要求A必须为方阵、实对称矩阵(即A=AT),如果A不是方阵,SVD可以对矩阵A进行分解。
定义
求解过程
本质解析
图像压缩案例
import numpy as np
import cv2
import matplotlib.pyplot as plt
path = 'lena.jpg'
data = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
data = np.mat(data) # 需要mat处理后才能在降维中使用矩阵的相乘
U, sigma, VT = np.linalg.svd(data)
count = 20 # 选择前20个奇异值
dig = np.diag(sigma[:count]) # 获得对角矩阵
redata = U[:, :count] * dig * VT[:count, :] # 重构后的数据
plt.imshow(data, cmap='gray')
plt.title("origin")
plt.show()
plt.imshow(redata, cmap='gray')
plt.title("SVD")
plt.show()
原图(400*500=200000)、
30个奇异值:(400+1+500)*30 = 27030,压缩比:200000/27020=7.4倍
20个奇异值:(400+1+500)*20 = 18020,压缩比:200000/18020=11.1倍
压缩效果对比,可以看出当奇异值越大时,它代表的信息越多,还原数据更真实。