基本概念
1.参数量:Params
2.计算量:FLOPs,Floating Point Operations,浮点运算次数,用来衡量模型计算复杂度。
3.延时:Latency
4.内存访问成本: MAC,memory access cost,存储模型所需的存储空间。
例如某个模型需要256000个浮点参数定义,转化为bit 乘以32得8192000bit,再除8转化为Byte,1024KB,也就是1M,那么这个模型大小约为1M。
5.乘加运算次数:MACs,multiply and accumulate operations,通常MACs=2FLOPs
6.每秒浮点运算次数:FLOPS,Floating Point Operations Per Second,是一个衡量硬件速度的指标。
7.每秒万亿次操作:TOPS,Tera Operations Per Second,1TOPS代表处理器每秒钟可进行一万亿次(10^12)操作,是处理器运算能力单位。
注意:区分FLOPs和FLOPS。
相互关系
1.相同 FLOPs 的两个模型,它们的延时可能会差很多。因为 FLOPs 只考虑模型总的计算量,而不考虑内存访问成本 (memory access cost, MAC) 和并行度 (degree of parallelism)。
2.在相同的 FLOPs 下,MAC 大的模型将具有更大的延时。
3.计算量有时候可以忽略,但是MAC