swish激活函数
函数公式
函数图像
当
β
\beta
β取不同的值时,函数图像如下:
当
β
\beta
β = 0时,Swish激活函数变为线性函数 f(x) =
x
2
\frac{x}{2}
2x,
当
β
\beta
β =
∞
\infty
∞ 时,Swish激活函数变为0或x,相当于Relu,
所以,Swish函数可以看作是介于线性函数与ReLU函数之间的平滑函数。
——————————————————————————————————
Swish函数的求导过程为:
导数图像如下:
函数特点
1.Swish函数和其一阶导数都具有平滑特性;
2.有下界,无上界,非单调。
对比mish激活函数
mish激活函数参考:mish激活函数
函数图像对比如下: