0. 简介
矩阵乘法和逆矩阵
1. 矩阵乘法表示
假设矩阵 A ( m , r ) A(m,r) A(m,r),矩阵 B ( r , n ) B(r,n) B(r,n), C ( m , n ) = A B C(m,n)=AB C(m,n)=AB
1.1 单点式
对于
C
i
j
=
∑
k
=
1
r
A
i
k
B
k
j
=
A
i
1
B
1
j
+
A
i
2
B
2
j
+
.
.
.
.
A
i
r
B
1
r
C_{ij}=\sum_{k=1}^{r}A_{ik}B_{kj}=A_{i1}B_{1j}+A_{i2}B_{2j}+....A_{ir}B_{1r}
Cij=∑k=1rAikBkj=Ai1B1j+Ai2B2j+....AirB1r。
翻译一下就是,矩阵
C
C
C的第
i
i
i行、第
j
j
j列的元素是由
A
A
A的第
i
i
i行,
B
B
B的第
j
j
j列
A
→
r
o
w
i
⋅
B
→
c
o
l
j
\overrightarrow A_{rowi} \cdot \overrightarrow B_{colj}
Arowi⋅Bcolj点乘而来。
1.2 行向量
矩阵 C C C的第 i i i行的结果,取决于矩阵 A A A的第 i i i行和矩阵 B B B的对应列。
因此我们可以将
A
A
A矩阵划分为若干个行向量,每个行向量与矩阵
B
B
B相乘。
最后将得到的结果矩阵放到
C
C
C中对应的
A
A
A行向量的位置。
即
A
B
=
[
A
r
o
w
1
B
A
r
o
w
2
B
.
.
.
A
r
o
w
m
B
]
=
C
AB= \begin{bmatrix} A_{row1}B\\ A_{row2}B\\ ...\\ A_{rowm}B \end{bmatrix}=C
AB=
Arow1BArow2B...ArowmB
=C
1.3 列向量
矩阵 C C C的第 j j j列的结果,取决于矩阵 B B B的第 j j j列和矩阵 A A A的对应行。
因此我们可以将
B
B
B矩阵划分为若干个列向量,每个行向量与矩阵
A
A
A相乘。
最后将得到的结果矩阵放到
C
C
C中对应的
B
B
B行向量的位置。
即
A
B
=
[
A
B
c
o
l
1
A
B
c
o
l
2
.
.
.
A
B
c
o
l
n
]
AB= \begin{bmatrix} AB_{col1} \ AB_{col2}\ ... \ AB_{coln} \end{bmatrix}
AB=[ABcol1 ABcol2 ... ABcoln]
1.4 列向量与行向量
C = A B = ∑ i = 1 r A c o l i B r o w i C=AB=\sum_{i=1}^{r}A_{col_{i}}B_{row_{i}} C=AB=i=1∑rAcoliBrowi
对于单点式,我们将它的定义进行拆分。
例如对于
C
C
C矩阵的第一行第一列
C矩阵中每一项元素满足定义式
C
i
j
=
∑
k
=
1
r
A
i
k
B
k
j
=
A
i
1
B
1
j
+
A
i
2
B
2
j
+
.
.
.
.
A
i
r
B
1
r
C_{ij}=\sum_{k=1}^{r}A_{ik}B_{kj}=A_{i1}B_{1j}+A_{i2}B_{2j}+....A_{ir}B_{1r}
Cij=k=1∑rAikBkj=Ai1B1j+Ai2B2j+....AirB1r
拆分
C
11
=
∑
k
=
1
r
A
1
k
B
k
1
=
A
11
B
11
+
A
12
B
21
+
.
.
.
+
A
1
r
B
r
1
C
12
=
∑
k
=
1
r
A
1
k
B
k
1
=
A
11
B
12
+
A
12
B
22
+
.
.
.
+
A
1
r
B
r
2
.
.
.
C
m
n
=
∑
k
=
1
r
A
m
k
B
k
n
=
A
m
1
B
1
n
+
A
m
2
B
2
n
+
.
.
.
+
A
m
r
B
r
n
C_{11}= \sum_{k=1}^{r}A_{1k}B_{k1}= A_{11}B_{11}+A_{12}B_{21} +...+A_{1r}B_{r1}\\ C_{12}= \sum_{k=1}^{r}A_{1k}B_{k1}= A_{11}B_{12}+A_{12}B_{22} +...+A_{1r}B_{r2}\\ ...\\ C_{mn}= \sum_{k=1}^{r}A_{mk}B_{kn}= A_{m1}B_{1n}+A_{m2}B_{2n} +...+A_{mr}B_{rn}\\\\
C11=k=1∑rA1kBk1=A11B11+A12B21+...+A1rBr1C12=k=1∑rA1kBk1=A11B12+A12B22+...+A1rBr2...Cmn=k=1∑rAmkBkn=Am1B1n+Am2B2n+...+AmrBrn
对于
C
C
C矩阵中的每一项元素都可以拆分成
r
r
r项。
即
C
11
=
∑
k
=
1
r
A
1
k
B
k
1
=
A
11
B
11
+
A
12
B
21
+
.
.
.
+
A
1
r
B
r
1
C
12
=
∑
k
=
1
r
A
1
k
B
k
2
=
A
11
B
12
+
A
12
B
22
+
.
.
.
+
A
1
r
B
r
2
.
.
.
C
21
=
∑
k
=
1
r
A
1
k
B
k
1
=
A
21
B
11
+
A
22
B
21
+
.
.
.
+
A
2
r
B
r
1
C
22
=
∑
k
=
1
r
A
1
k
B
k
1
=
A
21
B
12
+
A
22
B
22
+
.
.
.
+
A
2
r
B
r
2
.
.
.
C
m
n
=
∑
k
=
1
r
A
m
k
B
k
n
=
A
m
1
B
1
n
+
A
m
2
B
2
n
+
.
.
.
+
A
m
r
B
r
n
C_{11}= \sum_{k=1}^{r}A_{1k}B_{k1}= A_{11}B_{11}+A_{12}B_{21} +...+A_{1r}B_{r1}\\ C_{12}= \sum_{k=1}^{r}A_{1k}B_{k2}= A_{11}B_{12}+A_{12}B_{22} +...+A_{1r}B_{r2}\\ ...\\ C_{21}= \sum_{k=1}^{r}A_{1k}B_{k1}= A_{21}B_{11}+A_{22}B_{21} +...+A_{2r}B_{r1}\\ C_{22}= \sum_{k=1}^{r}A_{1k}B_{k1}= A_{21}B_{12}+A_{22}B_{22} +...+A_{2r}B_{r2}\\ ...\\ C_{mn}= \sum_{k=1}^{r}A_{mk}B_{kn}= A_{m1}B_{1n}+A_{m2}B_{2n} +...+A_{mr}B_{rn}\\\\
C11=k=1∑rA1kBk1=A11B11+A12B21+...+A1rBr1C12=k=1∑rA1kBk2=A11B12+A12B22+...+A1rBr2...C21=k=1∑rA1kBk1=A21B11+A22B21+...+A2rBr1C22=k=1∑rA1kBk1=A21B12+A22B22+...+A2rBr2...Cmn=k=1∑rAmkBkn=Am1B1n+Am2B2n+...+AmrBrn
[ A 11 B 11 + A 11 B 12 + . . . A m 1 B 1 n A 12 B 21 + . . . + A 1 r B r 1 A 12 B 22 + . . . + A 1 r B r 2 . . . A m 2 B 2 n + . . . + A m r B r n ] \left[ \begin{array}{l:c} \begin{matrix} A_{11}B_{11}+\\ A_{11}B_{12}+\\ ...\\ A_{m1}B_{1n} \end{matrix} & \begin{matrix} A_{12}B_{21} +...+A_{1r}B_{r1}\\ A_{12}B_{22} +...+A_{1r}B_{r2}\\ ...\\ A_{m2}B_{2n} +...+A_{mr}B_{rn} \end{matrix} \end{array} \right] A11B11+A11B12+...Am1B1nA12B21+...+A1rBr1A12B22+...+A1rBr2...Am2B2n+...+AmrBrn
对于虚线左边第一项可以划分为矩阵
[
A
11
A
21
.
.
.
A
m
1
]
[
B
11
B
12
.
.
.
B
1
n
]
\begin{bmatrix} A_{11}\\A_{21}\\...\\A_{m1} \end{bmatrix} \begin{bmatrix} B_{11}\ B_{12}\ ...\ B_{1n} \end{bmatrix}
A11A21...Am1
[B11 B12 ... B1n]
其余项的划分类似划分成
A
A
A的列向量和
B
B
B的行向量,再将划分的
r
r
r项相加即可。
举个例子
[
1
2
3
4
5
6
]
[
1
2
0
0
]
=
[
1
3
5
]
[
1
2
]
+
[
2
4
6
]
[
0
0
]
=
[
1
2
3
6
5
10
]
\begin{bmatrix} 1 & 2\\3 & 4\\5 &6 \end{bmatrix} \begin{bmatrix} 1 & 2\\0 &0 \end{bmatrix}= \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \\6 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix}= \begin{bmatrix} 1 & 2\\ 3 & 6\\ 5 & 10 \end{bmatrix}
135246
[1020]=
135
[12]+
246
[00]=
1352610
1.5 分块相乘
对于矩阵 A A A和矩阵 B B B,分块相乘与矩阵相乘的结果一致。
A = [ A 1 A 2 A 3 A 4 ] B = [ B 1 B 2 B 3 B 4 ] C = [ C 1 C 2 C 3 C 4 ] C 1 = A 1 B 1 + A 2 B 3 A= \left[ \begin{array}{c:c} A_1 & A_2\\ \hdashline A_3 & A_4 \end{array} \right]\\ \ B= \left[ \begin{array}{c:c} B_1 & B_2\\ \hdashline B_3 & B_4 \end{array} \right] \\ C= \left[ \begin{array}{c:c} C_1 & C_2\\ \hdashline C_3 & C_4\\ \end{array} \right]\\ C_1=A_1B_1+A_2B_3 A=[A1A3A2A4] B=[B1B3B2B4]C=[C1C3C2C4]C1=A1B1+A2B3
2. 矩阵的逆
我们限定讨论的矩阵为方阵。
逆矩阵即与原矩阵相乘为单位矩阵的矩阵。
A
=
[
1
0
0
−
2
1
0
0
0
1
]
B
=
[
1
0
0
2
1
0
0
0
1
]
A
B
=
I
A= \begin{bmatrix} 1 & 0 & 0\\ -2 &1 & 0\\ 0 & 0 & 1 \end{bmatrix}\\ B= \begin{bmatrix} 1 & 0 & 0\\ 2 & 1 & 0 \\ 0 & 0 & 1\\ \end{bmatrix}\\ AB=I
A=
1−20010001
B=
120010001
AB=I
称
B
B
B为
A
A
A的逆矩阵,记作
A
−
1
A^{-1}
A−1。
方阵的左右逆相同。
M
A
=
I
,
A
N
=
I
(
M
A
)
N
=
M
(
A
N
)
=
A
−
1
MA=I,AN=I\\ (MA)N= M(AN)=A^{-1}
MA=I,AN=I(MA)N=M(AN)=A−1
2.1 判断是否有逆矩阵
不是每个矩阵都有逆矩阵。
没有逆矩阵的矩阵又叫奇异矩阵。
如
[
1
2
2
4
]
\begin{bmatrix} 1 & 2\\ 2 & 4\\ \end{bmatrix}
[1224]
因为其中一组向量与另外一组向量平行。
等同于
∃
X
≠
0
,
使得
A
X
=
0
,
则
A
为奇异矩阵。
\exist X \ne0,使得AX=0,则A为奇异矩阵。
∃X=0,使得AX=0,则A为奇异矩阵。
否则
A
−
1
A
X
=
X
=
0
,但
X
≠
0
矛盾。
A^{-1}AX=X=0,但X \ne0矛盾。
A−1AX=X=0,但X=0矛盾。
对于例子
[
1
2
2
4
]
[
−
2
1
]
=
[
0
0
]
\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} -2\\1 \end{bmatrix}= \begin{bmatrix} 0\\0 \end{bmatrix}
[1224][−21]=[00]
2.2 求逆矩阵
高斯-若尔当方法
[ 1 3 2 7 ] [ a b c d ] = [ 1 0 0 1 ] \begin{bmatrix} 1 & 3\\2 &7 \end{bmatrix} \begin{bmatrix} a & b\\ c & d \end{bmatrix}= \begin{bmatrix} 1 & 0 \\ 0 &1 \end{bmatrix} [1237][acbd]=[1001]
本来是解两个方程
[
1
3
2
7
]
[
a
c
]
=
[
1
0
]
[
1
3
2
7
]
[
b
d
]
=
[
0
1
]
\begin{bmatrix} 1 & 3\\2 & 7 \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix}= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 1 & 3\\2 & 7 \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix}= \begin{bmatrix} 0 \\ 1 \end{bmatrix}
[1237][ac]=[10][1237][bd]=[01]
下面将接两个方程放在一起,将左边矩阵通过行变换成单位矩阵。
得到的右边矩阵就是其逆矩阵。
[ 1 3 1 0 2 7 0 1 ] ⟶ [ 1 3 1 0 0 1 − 2 1 ] ⟶ [ 1 0 7 − 3 0 1 − 2 1 ] \left[ \begin{array}{c:c} 1\ 3 & 1\ 0\\ 2\ 7 & 0\ 1 \end{array} \right] \longrightarrow \left[ \begin{array}{c:c} 1\ 3 & 1\ 0\\ 0\ 1 & -2\ 1 \end{array} \right] \longrightarrow \left[ \begin{array}{c:c} 1\ 0 & 7\ -3\\ 0\ 1 & -2\ 1 \end{array} \right] [1 32 71 00 1]⟶[1 30 11 0−2 1]⟶[1 00 17 −3−2 1]
原理:假设这些行变换可以通过矩阵 E E E表示,原矩阵为 A A A; E A = I EA=I EA=I,所以 E = A − 1 E=A^{-1} E=A−1;通过相同变化后右边变化后矩阵为 B = E I = E = A − 1 B=EI=E=A^{-1} B=EI=E=A−1
附:二阶方阵逆矩阵,
a
d
−
b
c
≠
0
ad-bc\ne0
ad−bc=0
A
=
[
a
b
c
d
]
A
−
1
=
1
a
d
−
b
c
[
d
−
b
−
c
a
]
A= \begin{bmatrix} a &b\\c & d \end{bmatrix}\\ A^{-1}= \frac{1}{ad-bc} \begin{bmatrix} d & -b\\-c &a \end{bmatrix}
A=[acbd]A−1=ad−bc1[d−c−ba]