MIT线性代数笔记-第3讲-乘法和逆矩阵

3.乘法和逆矩阵

矩阵乘法

[ a 1 , 1 ⋯ a 1 , n ⋮ ⋱ ⋮ a m , 1 ⋯ a m , n ] [ b 1 , 1 ⋯ b 1 , p ⋮ ⋱ ⋮ b n , 1 ⋯ b n , p ] = [ c 1 , 1 ⋯ c 1 , p ⋮ ⋱ ⋮ c m , 1 ⋯ c m , p ] A B C \begin{matrix} \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix} & \begin{bmatrix} b_{1,1} & \cdots & b_{1,p} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,p} \end{bmatrix} & = & \begin{bmatrix} c_{1,1} & \cdots & c_{1,p} \\ \vdots & \ddots & \vdots \\ c_{m,1} & \cdots & c_{m,p} \end{bmatrix} \\ A & B & & C \end{matrix} a1,1am,1a1,nam,n A b1,1bn,1b1,pbn,p B= c1,1cm,1c1,pcm,p C

只有左侧矩阵的列数与右侧矩阵的行数一致时二者才能相乘

  1. c i , j c_{i,j} ci,j等于 A A A的第 i i i行与 B B B的第 j j j列的点乘之积,即 c i , j = r o w   i   o f   A → ⋅ c o l u m n   j   o f   A − 1 → = ∑ k = 1 n a i , k ∗ b k , j c_{i,j} = \overrightarrow{row\ i\ of\ A} \cdot \overrightarrow{column\ j\ of\ A^{-1}} = \sum_{k=1}^{n} a_{i,k}*b_{k,j} ci,j=row i of A column j of A1 =k=1nai,kbk,j

    可用2,3的理解进行解释

  2. C C C的第 i i i行等于 A A A的第 i i i行与 B B B的乘积,即 [ a i , 1 ⋯ a i , n ] [ b 1 , 1 ⋯ b 1 , p ⋮ ⋱ ⋮ b n , 1 ⋯ b n , p ] = [ c i , 1 ⋯ c i , p ] \begin{bmatrix} a_{i,1} & \cdots & a_{i,n} \end{bmatrix} \begin{bmatrix} b_{1,1} & \cdots & b_{1,p} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,p} \end{bmatrix} = \begin{bmatrix} c_{i,1} & \cdots & c_{i,p} \end{bmatrix} [ai,1ai,n] b1,1bn,1b1,pbn,p =[ci,1ci,p]

    可以将 A A A视为 m m m n n n维向量,将 B B B视为一个 n n n维向量(其中每个元素为一个 p p p维向量),矩阵乘法即将 A A A中的每个 n n n维向量依次与 B B B点乘( A A A n n n维向量的元素为数,而向量 B B B的元素为向量,二者对应元素之积应为一个 n n n维向量,点乘结果即为所有对应元素之积的和),并将结果从上至下依次写下得到 C C C

  3. C C C的第 j j j列等于 A A A B B B的第 j j j列的乘积,即 [ a 1 , 1 ⋯ a 1 , n ⋮ ⋱ ⋮ a m , 1 ⋯ a m , n ] [ b 1 , j ⋮ b n , j ] = [ c 1 , j ⋮ c m , j ] \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix} \begin{bmatrix} b_{1,j} \\ \vdots \\ b_{n,j} \end{bmatrix} = \begin{bmatrix} c_{1,j} \\ \vdots \\ c_{m,j} \end{bmatrix} a1,1am,1a1,nam,n b1,jbn,j = c1,jcm,j

    可以将 B B B视为 p p p n n n维向量,将 A A A视为一个 n n n维向量(其中每个元素为一个 m m m维向量),矩阵乘法即将 B B B中的每个 n n n维向量依次与 A A A点乘( B B B n n n维向量的元素为数,而向量 A A A的元素为向量,二者对应元素之积应为一个 n n n维向量,点乘结果即为所有对应元素之积的和),并将结果从左至右依次写下得到 C C C

  4. C C C等于 A A A的列与 B B B的行相乘的叠加,即 C = ∑ k = 1 n [ a 1 , k ⋮ a m , k ] [ b k , 1 ⋯ b k , p ] C = \sum_{k=1}^{n} \begin{bmatrix} a_{1,k} \\ \vdots \\ a_{m,k} \end{bmatrix} \begin{bmatrix} b_{k,1} & \cdots & b_{k,p} \end{bmatrix} C=k=1n a1,kam,k [bk,1bk,p]

    可用2,3的理解进行解释

  5. 分块乘法

    • A , B A , B A,B为大小一致的方阵,分出的块关于主对角线对称且分块方式相同时, C C C也按相同方式分块,则 C C C中的任意块都可以用若干个 A A A中的块与 B B B中的块的乘积的和表示

      如: 已知 [ A 1 , 1 A 1 , 2 A 2 , 1 A 2 , 2 ] [ B 1 , 1 B 1 , 2 B 2 , 1 B 2 , 2 ] = [ C 1 , 1 C 1 , 2 C 2 , 1 C 2 , 2 ] A B C \begin{matrix} \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} & \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix} & = & \begin{bmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{bmatrix} \\ A & B & & C \end{matrix} [A1,1A2,1A1,2A2,2]A[B1,1B2,1B1,2B2,2]B=[C1,1C2,1C1,2C2,2]C,有 C 1 , 1 = A 1 , 1 B 1 , 1 + A 1 , 2 B 2 , 1 C_{1,1} = A_{1,1}B_{1,1}+A_{1,2}B_{2,1} C1,1=A1,1B1,1+A1,2B2,1

    • A [ B C ] = [ A B A C ] A \begin{bmatrix} B & C \end{bmatrix} = \begin{bmatrix} AB & AC \end{bmatrix} A[BC]=[ABAC](其中 B , C B , C B,C只需满足行数一致即可)

  6. 结合律: E 2 , 1 ( E 3 , 2 A ) = U E_{2,1} (E_{3,2} A) = U E2,1(E3,2A)=U,则 ( E 2 , 1 E 3 , 2 ) A = U (E_{2,1} E_{3,2}) A = U (E2,1E3,2)A=U

    证明: U U U中元素为 u u u

     对于 E 2 , 1 ( E 3 , 2 A ) = U E_{2,1} ( E_{3,2} A ) = U E2,1(E3,2A)=U

      u i , j = ( r o w   i   o f   E 2 , 1 ) ⋅ ( c o l u m n   j   o f   ( E 3 , 2 A ) ) = ( r o w   i   o f   E 2 , 1 ) ⋅ E 3 , 2 ⋅ ( c o l u m n   j   o f   A ) = ( r o w   i   o f   ( E 2 , 1 E 3 , 2 ) ) ⋅ ( c o l u m n   j   o f   A ) \begin{aligned} u_{i,j} & = (row\ i\ of\ E_{2,1}) \cdot (column\ j\ of\ (E_{3,2}A)) \\ & = (row\ i\ of\ E_{2,1}) \cdot E_{3,2} \cdot (column\ j\ of\ A) \\ & = (row\ i\ of\ (E_{2,1}E_{3,2})) \cdot (column\ j\ of\ A) \end{aligned} ui,j=(row i of E2,1)(column j of (E3,2A))=(row i of E2,1)E3,2(column j of A)=(row i of (E2,1E3,2))(column j of A)

     即对于 ( E 2 , 1 E 3 , 2 ) A = U ( E_{2,1} E_{3,2} ) A = U (E2,1E3,2)A=U u i , j u_{i,j} ui,j的表示方法

  1. 分配律: A ( B + C ) = A B + A C , ( B + C ) A = B A + C A A(B+C) = AB + AC , (B+C)A = BA + CA A(B+C)=AB+AC,(B+C)A=BA+CA

    看成向量的线性组合的叠加即可证明

  2. A ( x B ) = x A B A (xB) = xAB A(xB)=xAB

    看成向量的线性组合的加倍即可证明

    由此推导可知 ( x A ) m = x m A m , m ∈ N ∗ (xA)^m = x^m A^m , m \in N^* (xA)m=xmAm,mN

  3. [ 0 1 1 0 ] [ a b c d ] = [ c d a b ] , [ a b c d ] [ 0 1 1 0 ] = [ b a d c ] \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d\\ a & b \end{bmatrix} , \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} b & a\\ d & c \end{bmatrix} [0110][acbd]=[cadb],[acbd][0110]=[bdac]


逆矩阵

矩阵 A A A的逆矩阵记作 A − 1 A^{-1} A1(类似倒数),两者互为逆矩阵,满足相乘得到单位矩阵

可逆矩阵又称非奇异矩阵,不可逆矩阵又称奇异矩阵

广义上,可逆矩阵可以不为方阵,若如此则其逆矩阵可能为左逆或右逆(只能有一个),分别满足 A − 1 A = I , A A − 1 = I A^{-1} A = I , A A^{-1} = I A1A=I,AA1=I

一般地,可逆矩阵一定为方阵,且 A − 1 A = A A − 1 = I A^{-1} A = A A^{-1} = I A1A=AA1=I

未特殊说明按一般情况考虑(只考虑方阵的可不可逆)

设方阵为 n n n维方阵,记作 A A A,有:

  1. 证明方阵的逆矩阵可位于左右

    已知方阵 A A A及其左逆、右逆 L , R L , R L,R,有 L A = I , A R = I LA = I,AR = I LA=I,AR=I,则 L = L I = L ( A R ) = L A R = I R = R L = LI = L(AR) = LAR = IR = R L=LI=L(AR)=LAR=IR=R

  2. 不可逆的几种理解

    • 将矩阵视为多个行向量或列向量,若这些行/列向量无法组成一组基底,则该矩阵的行/列向量无法通过线性组合表示出 n n n个互相垂直的单位向量,即无法与任何矩阵相乘得到单位矩阵,该矩阵不可逆;

    • 若存在非零向量 x ⃗ \vec{x} x 使得 A x ⃗ = O A \vec{x} = O Ax =O(其中 x ⃗ \vec{x} x 为一列),则矩阵 A A A不可逆;

      理解: 可类比倒数, A x ⃗ = 0 A \vec{x} = 0 Ax =0 x ⃗ \vec{x} x 不为 0 0 0,则 A A A 0 0 0 0 0 0无倒数

      证明: A x ⃗ = O A \vec{x} = O Ax =O x ⃗ \vec{x} x 不为零向量)且 A A A为可逆矩阵,则 A − 1 A x ⃗ = O A^{-1} A \vec{x} = O A1Ax =O,即 x ⃗ = O \vec{x} = O x =O,矛盾

  3. 求逆矩阵

    • 解方程组

      A − 1 A^{-1} A1的每个元素设为不同的未知量,用 A A A依次乘 A − 1 A^{-1} A1的每一列或用 A − 1 A^{-1} A1的每一行依次乘 A A A,并写出一个 n n n元方程组,求解

    • 高斯-诺尔丹消元

      例: [ 1 3 2 7 ] [ a b c d ] = [ 1 0 0 1 ] \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [1237][acbd]=[1001]

        增广矩阵: [ 1 3 ∣ 1 0 2 7 ∣ 0 1 ] A I \begin{matrix} \begin{bmatrix} 1 & 3 & | & 1 & 0 \\ 2 & 7 & | & 0 & 1\end{bmatrix} \\ A \qquad \quad I \end{matrix} [12371001]AI

        消元: [ 1 3 ∣ 1 0 2 7 ∣ 0 1 ] A I → ( 2 , 1 ) [ 1 3 ∣ 1 0 0 1 ∣ − 2 1 ]   → ( 1 , 2 ) [ 1 0 ∣ 7 − 3 0 1 ∣ − 2 1 ] I A − 1 \begin{matrix} \begin{bmatrix} 1 & 3 & | & 1 & 0 \\ 2 & 7 & | & 0 & 1\end{bmatrix} \\ A \qquad \quad I \end{matrix} \overset{(2,1)}{\rightarrow} \begin{matrix} \begin{bmatrix} 1 & 3 & | & 1 & 0 \\ 0 & 1 & | & -2 & 1\end{bmatrix} \\ \ \end{matrix} \overset{(1,2)}{\rightarrow} \begin{matrix} \begin{bmatrix} 1 & 0 & | & 7 & -3 \\ 0 & 1 & | & -2 & 1\end{bmatrix} \\ I \qquad \quad A^{-1} \end{matrix} [12371001]AI(2,1)[10311201] (1,2)[10017231]IA1

        其中 A − 1 A^{-1} A1恰好为消元过程所用矩阵的乘积

      证明: 设消元过程所用矩阵的乘积为 E E E E E E A A A大小相同

         分块有 E [ A I ] = [ I ? ] E \begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} I & ? \end{bmatrix} E[AI]=[I?]

         则 E A = I , E I = ? E A = I , E I = ? EA=I,EI=?,所以 E = A − 1 , ? = E = A − 1 E = A^{-1} , ? = E = A^{-1} E=A1,?=E=A1

  4. 乘法

    • 可逆矩阵的乘积为可逆矩阵

      已知可逆矩阵 A , B A , B A,B,由结合律得 A B B − 1 A − 1 = I AB B^{-1} A^{-1} = I ABB1A1=I,因而 A B AB AB为可逆矩阵,且其逆矩阵为 B − 1 A − 1 B^{-1} A^{-1} B1A1

    • 任意矩阵乘不可逆矩阵或不可逆矩阵乘任意矩阵均得到不可逆矩阵

      相当于对不可逆矩阵的行/列向量加倍及相加得到结果矩阵的行/列向量,这些向量还是无法构成基底

  5. 用于消元的矩阵的逆即将该矩阵代表操作的逆操作表示为矩阵


打赏

制作不易,若有帮助,欢迎打赏!
赞赏码

支付宝付款码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒蜩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值