线性代数笔记22--微分方程、exp(At)

1. 微分方程

常系数微分方程的解都是指数形式的。

举例
{ d u 1 d t = − u 1 + 2 u 2 d u 2 d t = u 1 − 2 u 2 \begin{cases} \frac{du_1}{dt}=-u_1+2u_2\\ \frac{du_2}{dt}=u_1-2u_2 \end{cases} {dtdu1=u1+2u2dtdu2=u12u2
系数矩阵为
A = [ − 1 2 1 − 1 ] A=\begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} A=[1121]
假设
u 0 = [ u 1 ( 0 ) u 2 ( 0 ) ] = [ 1 0 ] u_0=\begin{bmatrix} u_1(0) \\ u_2(0) \end{bmatrix}= \begin{bmatrix} 1 \\ 0 \end{bmatrix} u0=[u1(0)u2(0)]=[10]
求系数矩阵特征值
d e t   A − λ I = [ − 1 − λ 2 1 − 2 − λ ] = ( λ + 2 ) ( λ + 1 ) − 2 = λ ( λ + 3 ) det\ A-\lambda I= \begin{bmatrix} -1-\lambda & 2\\ 1 & -2-\lambda \end{bmatrix}= (\lambda+2)(\lambda+1)-2= \lambda(\lambda+3) det AλI=[1λ122λ]=(λ+2)(λ+1)2=λ(λ+3)
解得特征值
λ 1 = 0 λ 2 = − 3 \lambda_1=0\\ \lambda_2=-3 λ1=0λ2=3
特征向量
X 1 = [ 2 1 ] X 2 = [ 1 − 1 ] X_1=\begin{bmatrix} 2\\1 \end{bmatrix} X_2=\begin{bmatrix} 1\\-1 \end{bmatrix} X1=[21]X2=[11]

解的形式
u ( t ) = c 1 e λ 1 t X 1 + c 2 e λ 2 t X 2 u(t)=c_1e^{\lambda_1t}X_1+c_2e^{\lambda_2t}X_2 u(t)=c1eλ1tX1+c2eλ2tX2
检验
d u d t = A u ( e λ t ) ′ = λ e λ t λ e λ t X = A e λ t X λ X = A X \frac{du}{dt}=Au\\ (e^{\lambda t})'=\lambda e^{\lambda t}\\ \lambda e^{\lambda t}X=Ae^{\lambda t}X\\ \lambda X=AX dtdu=Au(eλt)=λeλtλeλtX=AeλtXλX=AX
与矩阵幂联系
u k + 1 = A k u 0 = S Λ k c = c 1 Λ 1 100 X 1 + c 2 Λ 2 100 X 2 + . . . c 1 Λ n 100 X n \begin{align} u_{k+1}=A^{k}u_0=S\Lambda^{k}c &=c_1\Lambda_1^{100}X_1+c_2\Lambda_2^{100}X_2+...c_1\Lambda_n^{100}X_n \nonumber \\\nonumber \end{align} uk+1=Aku0=SΛkc=c1Λ1100X1+c2Λ2100X2+...c1Λn100Xn
形式上非常相似
现在求 c 1   c 2 c_1\ c_2 c1 c2
t = 0 : c 1 [ 2 1 ] + c 2 [ 1 − 1 ] = u 0 = [ 1 0 ] c 1 = c 2 = 1 3 t=0:\\ c_1\begin{bmatrix} 2 \\ 1\end{bmatrix}+ c_2\begin{bmatrix} 1 \\ -1\end{bmatrix}=u_0= \begin{bmatrix} 1 \\ 0\end{bmatrix}\\ c_1=c_2=\frac{1}{3} t=0:c1[21]+c2[11]=u0=[10]c1=c2=31
解的方程形式为
u ( t ) = 1 3 [ 2 1 ] + 1 3 [ 1 − 1 ] e − 3 t u(t)=\frac{1}{3}\begin{bmatrix} 2\\1\end{bmatrix} + \frac{1}{3}\begin{bmatrix}1\\-1\end{bmatrix} e^{-3t} u(t)=31[21]+31[11]e3t
t → ∞ t \to \infin t时, u ( t ) → 1 3 [ 2 1 ] u(t)\to \frac{1}{3}\begin{bmatrix} 2\\1\end{bmatrix} u(t)31[21]
方程趋于稳态。

  1. 稳定性
    u ( t ) → 0 , e λ t → 0 , R e   λ < 0 u(t) \to 0,e^{\lambda t}\to 0,Re\ \lambda\lt 0 u(t)0,eλt0,Re λ<0
  2. 稳态
    λ 1 = 0 ∧ ∀ R e   λ j < 0 , j ≠ 1 \lambda_1=0 \wedge \forall Re \ \lambda_j \lt 0,j \ne 1 λ1=0Re λj<0,j=1
  3. 发散
    ∃ λ i > 0 \exist \lambda_i \gt 0 λi>0

讨论 2 × 2 2 \times 2 2×2的情况
A = [ a b c d ] t r a c e = a + d = λ 1 + λ 2 A= \begin{bmatrix} a & b\\ c & d \end{bmatrix}\\ trace = a + d=\lambda_1+\lambda_2 A=[acbd]trace=a+d=λ1+λ2
迹为负数,发散的情况
[ − 2 0 0 1 ] \begin{bmatrix} -2 & 0\\ 0 & 1 \end{bmatrix}\\ [2001]
所以还需要保证一个条件 d e t   A > 0 det\ A \gt0 det A>0

  • t r a c e = λ 1 + λ 2 < 0 trace=\lambda_1+\lambda_2\lt0 trace=λ1+λ2<0
  • d e t   A = λ 1 λ 2 > 0 det\ A =\lambda_1 \lambda_2 \gt 0 det A=λ1λ2>0

我们将上面的过程考虑为矩阵的形式
u 0 = S c c = S − 1 u 0 u k + 1 = A k u 0 = A k S c = S Λ k c = S Λ S − 1 u 0 u_0=Sc\\ c = S^{-1}u_0\\ \begin{align} u_{k+1}=A^{k}u_0&=A^{k}Sc\nonumber\\ &=S \Lambda^{k}c \nonumber \\ &=S\Lambda S^{-1}u_0 \nonumber \end{align} u0=Scc=S1u0uk+1=Aku0=AkSc=SΛkc=SΛS1u0
带入自然常数的指数函数
u k + 1 = S e Λ S − 1 u 0 e Λ = [ e λ 1 ⋯ e λ n ] u_{k+1}=Se^{\Lambda}S^{-1}u_0\\ e^{\Lambda}= \begin{bmatrix} e^{\lambda_1} & &\\ &\cdots&\\ &&e^{\lambda_n} \end{bmatrix} uk+1=SeΛS1u0eΛ= eλ1eλn

2. exp(At)

矩阵的幂次函数

e A t = I + A t + ( A t ) 2 2 + ⋯ + ( A t ) n n ! = ∑ i = 0 n ( A t ) i i ! e^{At} = I + At+\frac{(At)^2}{2}+\cdots+\frac{(At)^{n}}{n !}=\sum_{i=0}^{n}\frac{(At)^i}{i!} eAt=I+At+2(At)2++n!(At)n=i=0ni!(At)i
另一个级数
( I − A t ) − 1 = I + A t + ( A t ) 2 + ⋯ + ( A t ) k (I-At)^{-1}=I+At+(At)^{2}+\cdots+(At)^{k} (IAt)1=I+At+(At)2++(At)k
但这个级数不一定收敛且要求有逆。

证明第一个级数
e A t = I + A t + ( A t ) 2 2 + ( A t ) 3 3 ! + ⋯ A = S Λ S − 1 带入 e A t = S S − 1 + S Λ S − 1 + S Λ 2 S − 1 + ⋯ e A t = S e Λ t S − 1 e Λ t = e Λ = [ e λ 1 t ⋯ e λ n t ] e^{At}=I + At + \frac{(At)^2}{2}+\frac{(At)^3}{3!}+\cdots \\A=S\Lambda S^{-1}带入\\ e^{At}=SS^{-1}+S\Lambda S^{-1}+S\Lambda^2S^{-1}+\cdots\\ e^{At}=Se^{\Lambda t}S^{-1}\\ e^{\Lambda t}= e^{\Lambda}= \begin{bmatrix} e^{\lambda_1}t & &\\ &\cdots&\\ &&e^{\lambda_n}t \end{bmatrix} eAt=I+At+2(At)2+3!(At)3+A=SΛS1带入eAt=SS1+SΛS1+SΛ2S1+eAt=SeΛtS1eΛt=eΛ= eλ1teλnt

例子解二阶微分方程
y ′ ′ + b y ′ ′ + k y = 0 y''+by''+ky=0 y′′+by′′+ky=0
化成矩阵
u = [ y ′ y ] u ′ = [ y ′ ′ y ′ ] = [ − b − k 1 0 ] [ y ′ y ] u= \begin{bmatrix} y'\\y \end{bmatrix}\\ u'=\begin{bmatrix} y'' \\ y' \end{bmatrix}= \begin{bmatrix} -b & -k\\1 & 0 \end{bmatrix} \begin{bmatrix} y'\\y \end{bmatrix}\\ u=[yy]u=[y′′y]=[b1k0][yy]
对于 k k k阶的线性微分方程都可以化成相似的形式
u k = [ y k + 1 y k y k ] u k ′ = [ y k + 2 y k + 1 y k ] u k ′ = [ a 1 a 2 a 3 0 1 0 0 0 1 ] [ y k + 1 y k y k ] u_k= \begin{bmatrix} y^{k+1} \\y^{k}\\y^{k} \end{bmatrix}\\ u_k'=\begin{bmatrix} y^{k+2}\\y^{k+1}\\y^{k} \end{bmatrix}\\ u_k'= \begin{bmatrix} a_1 & a_2 & a_3\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y^{k+1} \\y^{k}\\y^{k} \end{bmatrix}\\ uk= yk+1ykyk uk= yk+2yk+1yk uk= a100a210a301 yk+1ykyk
其中第一行是方程系数的相反数,其他行构成单位矩阵的形式。

4. 欧拉公式

e i x = cos ⁡ x + i sin ⁡ x e^{ix}= \cos x +i \sin x eix=cosx+isinx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值