Ollama 安装、运行大模型(CPU 实操版)

1. 操作步骤

1.1 安装

# 通过 homebrew 安装
brew install ollama

1.2 验证(可跳过)

# 输出命令使用提示则安装成功
ollama --help

1.3 启动服务端

# 启动 ollama 服务(默认在 11434 端口,模型文件在 ~/.ollama)
ollama serve

1.4 跑通第一个模型

# 新开一个终端窗口,执行如下命令(将下载并运行 Qwen2 的 0.5B 的 Chat 模型)
ollama run qwen2.5:0.5b-instruct

2. 参考资料

2.1 Ollama

GitHub

https://github.com/ollama/ollama

3. 资源

3.1 Ollama

library(模型工厂)

https://ollama.com/library

<think>嗯,用户想了解如何使用Ollama来训练和微调大模型。首先,我需要回忆一下Ollama的基本信息。Ollama主要是用来本地运行大型语言模型的工具,支持多种模型如Llama、Mistral等。用户可能已经知道如何用Ollama运行模型,现在想进一步了解如何训练和微调自己的模型。 首先,我得确认Ollama是否支持训练和微调功能。根据之前的了解,Ollama主要专注于模型的部署和运行,而不是训练。训练大模型通常需要更多的资源和框架,比如PyTorch、TensorFlow或者Hugging Face的Transformers库。可能用户误以为Ollama可以直接进行训练,需要澄清这一点。 接下来,用户可能需要了解如何准备数据,选择合适的框架,进行模型训练,然后如何将训练好的模型集成到Ollama中使用。需要分步骤解释,从数据准备到微调,再到转换模型格式,最后加载到Ollama。 另外,用户可能对微调的具体方法感兴趣,比如LoRA(低秩适应)或者QLoRA,这些技术可以在资源有限的情况下进行微调。需要简要介绍这些方法,并给出示例代码,比如使用Hugging Face的库进行微调。 还需要注意模型格式的转换,Ollama使用的是GGUF或GGML格式,所以训练后的PyTorch模型需要转换成这种格式,可能需要用到llama.cpp这样的工具。这里要详细说明转换步骤,确保用户能够作。 可能遇到的误区是用户直接使用Ollama进行训练,但际上需要依赖其他工具。需要明确指出Ollama的角色,并引导用户使用正确的工具链。同时,提醒用户训练和微调所需的硬件资源,比如GPU的重要性,避免他们在资源不足的情况下尝试训练大型模型。 最后,确保回答结构清晰,分步骤说明,并给出示例命令和代码,帮助用户逐步完成整个过程。同时要强调Ollama本身不提供训练功能,而是需要结合其他框架,避免混淆。</think>以下是关于Ollama运行大模型的训练和微调技术的分步说明: ### 一、基础认知 1. **Ollama定位** Ollama是专注于大模型**本地化部署和推理**的工具,原生不提供训练功能,其核心价值在于: - 提供预编译的GGUF/GGML格式模型 - CPU/GPU混合推理优化 - 简化模型交互接口 2. **训练层级划分**: ```mermaid graph LR A[预训练] --> B[指令微调] B --> C[领域适配] C --> D[量化部署] ``` ### 二、完整训练流程(需配合其他框架) #### 步骤1:环境准备 ```bash # 示例环境配置 conda create -n llama_train python=3.10 conda activate llama_train pip install torch==2.0.1 transformers==4.33.0 datasets==2.14.4 peft==0.5.0 ``` #### 步骤2:数据准备 ```python # 数据集格式示例(JSONL) { "instruction": "解释量子纠缠", "input": "", "output": "量子纠缠是量子力学中..." } ``` #### 步骤3:选择微调方法 **LoRA微调示例**: ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=8, lora_alpha=16, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) model = get_peft_model(base_model, lora_config) ``` #### 步骤4:训练执行 ```bash # 使用Hugging Face Trainer accelerate launch --num_processes 4 \ --mixed_precision bf16 \ train.py \ --model_name meta-llama/Llama-2-7b-chat-hf \ --batch_size 2 \ --gradient_accumulation_steps 8 ``` ### 三、Ollama集成流程 1. **模型格式转换** ```bash # 使用llama.cpp转换 ./quantize ./models/ggml-model-f16.gguf ./models/ggml-model-q4_0.gguf q4_0 ``` 2. **创建Modelfile** ```text FROM ./finetuned-llama-7b-q4_0.gguf PARAMETER num_ctx 4096 PARAMETER temperature 0.7 ``` 3. **部署运行** ```bash ollama create mymodel -f Modelfile ollama run mymodel ``` ### 四、关键注意事项 1. **硬件需求**: - 7B模型微调需24GB+显存 - 使用QLoRA可将需求降至12GB - CPU训练效率极低(不推荐) 2. **常见误区**: - 误将Ollama作为训练框架 - 未正确配置Flash Attention - 忽视梯度累积设置 ### 五、进阶技巧 1. **混合精度训练**: ```python torch.cuda.amp.autocast() scaler = GradScaler() ``` 2. **监控工具**: ```bash wandb login ``` 3. **量化部署优化**: ```text GGUF支持多种量化类型: - q4_0:平衡选择 - q5_k_m:高质量输出 - q2_k:最小内存占用 ``` 建议在完整训练流程中结合NVIDIA的NeMo或DeepSpeed等优化框架,可提升大规模训练的稳定性。际案例显示,使用LoRA微调Llama2-7B模型在A100上约需6-8小时完成领域适配训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值