电信客户流失预测分析与工业工程中机器学习和深度学习算法的应用
电信客户流失预测系统架构
客户流失是企业业务发展的关键问题,客户留存比获取新客户成本更低,因此至关重要。在提出的系统中,我们通过Kaggle从IBM样本数据集中获取电信客户流失数据集。该数据集包含两百万客户信息,对客户的分类考虑了数值、顺序和分类特征,还涵盖网络使用、订阅以及与客服中心的交互等信息。
在决策树分析的数据库知识发现(KDD)过程中,会从不同数据库中提取各种模式。数据预处理时会考虑每月/每周数据量、消费者特征及其近期历史。数据有统计分析和决策树分析两种分析方式。统计分析用于优化电信公司网络资源、提升服务并减少客户流失,涉及计算均值、标准差、方差、标准误差和置信区间;决策树分析则基于数据获取、准备、预处理、提取和最终决策等步骤。
系统中的数据集是电信客户流失数据集,其处理流程如下:
1. 数据准备 :修复缺失值,过滤高价值客户。
2. 探索性数据分析 :提取有用见解。
3. 数据操作 :利用提取的信息特征减少特征数量。
4. 模型生成 :包括缩放、训练/测试分割、特征减少,并使用逻辑回归、决策树等算法训练模型。通过交叉验证算法选择I - GBDT算法,并使用评估指标估计其准确性、精度和召回率。
5. 模型评估 :进行超参数调整和验证,生成混淆矩阵评估模型。
I - GBDT算法步骤
- 数据准备
订阅专栏 解锁全文
26

被折叠的 条评论
为什么被折叠?



