主要是对spss文件的统计分析
注意:psych包和Hmisc包均提供名为describe()的函数,最后载入的程序包优先,建议使用psych包
#描述性分析
# 安装和加载 Hmisc 包
#install.packages("Hmisc")
library(Hmisc)
# 读取 SPSS 文件,假设文件名为 data.sav
# 注意: 要读取 SPSS 文件,你需要安装 'foreign' 包
#install.packages("foreign")
library(foreign)
library(psych)
# 读取文件前先设置工作路径
# 读取 SPSS 文件
data <- read.spss("ceshi.sav", to.data.frame = TRUE)
# 选择要计算相关性的变量
variables_of_interest <- c("PDN", "TSE", "TM", "JS")
# 更详细的描述性统计分析,包括标准差
#n(样本数) mean(平均值) sd(标准差) median(中位数)
#trimmed(修剪平均值) mad(中位数绝对离差)
#min(最小值) max(最大值) range(范围) skew(偏度) kurtosis(峰度) se(标准误差)
describe(subset_data)
# 直方图,需要其他数据的切换其他变量
hist(subset_data$PDN, main="PDN Distribution", xlab="PDN Values", col="lightblue", border="black")
# 箱线图
boxplot(subset_data, main="Boxplot of Variables", col=c("lightblue", "lightgreen", "lightpink", "lightyellow"))
# 散点图矩阵
pairs(subset_data, main="Scatterplot Matrix")