小白从零自学R语言记录——描述性统计分析

本文介绍了如何在R语言中利用Hmisc和psych包对SPSS文件进行描述性统计分析,包括基本统计量、直方图、箱线图和散点图矩阵的绘制,以探索变量间的关系。
摘要由CSDN通过智能技术生成

主要是对spss文件的统计分析

注意:psych包和Hmisc包均提供名为describe()的函数,最后载入的程序包优先,建议使用psych包

#描述性分析
# 安装和加载 Hmisc 包
#install.packages("Hmisc")
library(Hmisc)

# 读取 SPSS 文件,假设文件名为 data.sav
# 注意: 要读取 SPSS 文件,你需要安装 'foreign' 包
#install.packages("foreign")
library(foreign)
library(psych)
# 读取文件前先设置工作路径
# 读取 SPSS 文件
data <- read.spss("ceshi.sav", to.data.frame = TRUE)
# 选择要计算相关性的变量
variables_of_interest <- c("PDN", "TSE", "TM", "JS")
# 更详细的描述性统计分析,包括标准差
#n(样本数) mean(平均值)   sd(标准差) median(中位数) 
#trimmed(修剪平均值)  mad(中位数绝对离差) 
#min(最小值) max(最大值) range(范围)  skew(偏度) kurtosis(峰度)   se(标准误差)
describe(subset_data)
# 直方图,需要其他数据的切换其他变量
hist(subset_data$PDN, main="PDN Distribution", xlab="PDN Values", col="lightblue", border="black")
# 箱线图
boxplot(subset_data, main="Boxplot of Variables", col=c("lightblue", "lightgreen", "lightpink", "lightyellow"))
# 散点图矩阵
pairs(subset_data, main="Scatterplot Matrix")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值