向量内积的几何含义

在向量空间中,两个向量的点积(也称为内积或数量积)可以用几何方式解释。假设有两个向量 a ⃗ \vec{a} a b ⃗ \vec{b} b ,它们的点积为 a ⃗ ⋅ b ⃗ \vec{a}\cdot\vec{b} a b ,则它们的几何意义如下:

  1. a ⃗ ⋅ b ⃗ \vec{a}\cdot\vec{b} a b 的值等于 a ⃗ \vec{a} a b ⃗ \vec{b} b 方向上的投影长度与 b ⃗ \vec{b} b 的长度的乘积。具体来说,可以将 a ⃗ \vec{a} a 沿着 b ⃗ \vec{b} b 方向拆分成两个部分:一个在 b ⃗ \vec{b} b 方向上的投影向量 p ⃗ \vec{p} p ,以及一个垂直于 b ⃗ \vec{b} b 方向的向量 r ⃗ \vec{r} r 。则 a ⃗ ⋅ b ⃗ \vec{a}\cdot\vec{b} a b 等于 p ⃗ \vec{p} p 的长度与 b ⃗ \vec{b} b 的长度的乘积,即 a ⃗ ⋅ b ⃗ = ∣ p ⃗ ∣ ⋅ ∣ b ⃗ ∣ \vec{a}\cdot\vec{b}=|\vec{p}|\cdot|\vec{b}| a b =p b

  2. 另一方面, a ⃗ ⋅ b ⃗ \vec{a}\cdot\vec{b} a b 的值也等于 b ⃗ \vec{b} b a ⃗ \vec{a} a 方向上的投影长度与 a ⃗ \vec{a} a 的长度的乘积。和上面类似,可以将 b ⃗ \vec{b} b 沿着 a ⃗ \vec{a} a 方向拆分成两个部分:一个在 a ⃗ \vec{a} a 方向上的投影向量 q ⃗ \vec{q} q ,以及一个垂直于 a ⃗ \vec{a} a 方向的向量 s ⃗ \vec{s} s 。则 a ⃗ ⋅ b ⃗ \vec{a}\cdot\vec{b} a b 等于 q ⃗ \vec{q} q 的长度与 a ⃗ \vec{a} a 的长度的乘积,即 a ⃗ ⋅ b ⃗ = ∣ q ⃗ ∣ ⋅ ∣ a ⃗ ∣ \vec{a}\cdot\vec{b}=|\vec{q}|\cdot|\vec{a}| a b =q a

  3. 最后,如果 a ⃗ \vec{a} a b ⃗ \vec{b} b 的夹角为 θ \theta θ,则 a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ ⋅ cos ⁡ θ \vec{a}\cdot\vec{b}=|\vec{a}|\cdot|\vec{b}|\cdot\cos\theta a b =a b cosθ。这个公式说明了两个向量的点积等于它们长度的乘积与它们之间夹角的余弦值的乘积。

因此,向量的点积可以用来量化两个向量之间的相似度。如果两个向量的夹角越接近 0 0 0,则它们的点积越大,表示它们越相似;如果夹角越接近 9 0 ∘ 90^\circ 90,则它们的点积越小,表示它们越不相似。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hailey的算法学习笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值