参考链接
- https://docs.dgl.ai/en/latest/guide/training-edge.html#guide-training-edge-classification
回归问题与分类问题只是损失函数上的不同,模型和流程都是一样的。而获得边的预测值或者类别,可以通过融合端点的表示和边自身的表示来获得(在本节中没用上边的特征)。
同构图上的边回归任务
处理数据
使用“跟着官方文档学DGL框架第一天”中相同的构建方式,手工构建一个双向图。注:现在DGL推荐使用“dgl.graph()”的方式构建图,不再建议使用“dgl.DGLGraph()”。
然后为节点和边附上特征和标签,并为边加上训练掩码,标明60%的边作为训练集。
src = np.random.randint(0, 100, 500)
dst = np.random.randint(0, 100, 500)
# 同时建立反向边
edge_pred_graph = dgl.graph((np.concatenate([src, dst]), np.concatenate([dst, src])))
# 建立点和边特征,以及边的标签
edge_pred_graph.ndata['feature'] = torch.randn(100, 10)
edge_pred_graph.edata['feature'] = torch.randn(1000, 10)
edge_pred_graph.edata['label'] = torch.randn(1000)
# 进行训练、验证和测试集划分
edge_pred_graph.edata['train_mask'] = torch.zeros(1000, dtype=torch.bool).bernoulli(0.6)
预测分数计算
点积
可以将边的端点的表示做点积,得到的值作为预测分数。
class DotProductPredictor(nn.Module):
def forward(self, graph, h):
with graph.local_scope():
graph.ndata['h'] = h
graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
return graph.edata['score']
MLP
可以输入端点的表示到多层感知机,生成一个预测分数。或者更复杂的模型,融合上边的表示等。
class MLPPredictor(nn.Module):
def __init__(self, in_features, out_classes):
super().__init__()
self.W = nn.Linear(in_features * 2, out_classes)
def apply_edges(self, edges):
h_u = edges.src['h']
h_v = edges.dst['h']
score = self.W(torch.cat([h_u, h_v], 1))
return {'score': score}
def forward(self, graph, h):
with graph.local_scope():
graph.ndata['h'] = h
graph.apply_edges(self.apply_edges)
return graph.edata['score']
节点表示生成模型
边的预测值是建立在节点表示之上的,所以要先获得节点表示。这里采用“跟着官方文档学DGL框架第八天”中同构图节点分类的模型“SAGE()”。
class SAGE(nn.Module):
def __init__(self, in_feats, hid_feats, out_feats):
super().__init__()
self.conv1 = dglnn.SAGEConv(
in_feats=in_feats, out_feats=hid_feats, aggregator_type='mean')
self.conv2 = dglnn.SAGEConv(
in_feats=hid_feats, out_feats=out_feats, aggregator_type='mean')
def forward(self, graph, inputs):
h = self.conv1(graph, inputs)
h = F.relu(h)
h = self.conv2(graph, h)
return h
边预测模型
这里的边分数预测采用了简单的点积。
class Model(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super().__init__()
self.sage = SAGE(in_features, hidden_features, out_features)
self.pred = DotProductPredictor()
def forward(self, g, x):
h = self.sage(g, x)
return self.pred(g, h)
开始训练
使用均方差损失函数(MSE)。
node_features = edge_pred_graph.ndata['feature']
edge_label = edge_pred_graph.edata['label']
train_mask = edge_pred_graph.edata['train_mask']
model = Model(10, 20, 5)
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
pred = model(edge_pred_graph, node_features)
loss = ((pred[train_mask] - edge_label[train_mask]) ** 2).mean()
opt.zero_grad()
loss.backward()
opt.step()
print(loss.item())
异构图上的边回归任务
与同构图类似,依然是先获取节点的表示,再通过节点表示和边的表示,得到边上的预测值。
处理数据
使用“跟着官方文档学DGL框架第八天”中人工构建的异构图数据集,包含两种类型的结点和六种类型的边。
n_users = 1000
n_items = 500
n_follows = 3000
n_clicks = 5000
n_dislikes = 500
n_hetero_features = 10
n_user_classes = 5
n_max_clicks = 10
follow_src = np.random.randint(0, n_users, n_follows)
follow_dst = np.random.randint(0, n_users, n_follows)
click_src = np.random.randint(0, n_users, n_clicks)
click_dst = np.random.randint(0, n_items, n_clicks)
dislike_src = np.random.randint(0, n_users, n_dislikes)
dislike_dst = np.random.randint(0, n_items, n_dislikes)
hetero_graph = dgl.heterograph({
('user', 'follow', 'user'): (follow_src, follow_dst),
('user', 'followed-by', 'user'): (follow_dst, follow_src),
('user', 'click', 'item'): (click_src, click_dst),
('item', 'clicked-by', 'user'): (click_dst, click_src),
('user', 'dislike', 'item'): (dislike_src, dislike_dst),
('item', 'disliked-by', 'user'): (dislike_dst, dislike_src)})
hetero_graph.nodes['user'].data['feature'] = torch.randn(n_users, n_hetero_features)
hetero_graph.nodes['item'].data['feature'] = torch.randn(n_items, n_hetero_features)
hetero_graph.nodes['user'].data['label'] = torch.randint(0, n_user_classes, (n_users,))
hetero_graph.edges['click'].data['label'] = torch.randint(1, n_max_clicks, (n_clicks,)).float()
# randomly generate training masks on user nodes and click edges
hetero_graph.nodes['user'].data['train_mask'] = torch.zeros(n_users, dtype=torch.bool).bernoulli(0.6)
hetero_graph.edges['click'].data['train_mask'] = torch.zeros(n_clicks, dtype=torch.bool).bernoulli(0.6)
预测分数计算
与同构图没有太大区别,只需要明确边的类型即可。
点积
class HeteroDotProductPredictor(nn.Module):
def forward(self, graph, h, etype):
with graph.local_scope():
graph.ndata['h'] = h
graph.apply_edges(fn.u_dot_v('h', 'h', 'score'), etype=etype)
return graph.edges[etype].data['score']
MLP
class MLPPredictor(nn.Module):
def __init__(self, in_features, out_classes):
super().__init__()
self.W = nn.Linear(in_features * 2, out_classes)
def apply_edges(self, edges):
h_u = edges.src['h']
h_v = edges.dst['h']
score = self.W(torch.cat([h_u, h_v], 1))
return {'score': score}
def forward(self, graph, h, etype):
with graph.local_scope():
graph.ndata['h'] = h
graph.apply_edges(self.apply_edges, etype=etype)
return graph.edges[etype].data['score']
节点表示生成模型
这里采用“跟着官方文档学DGL框架第八天”中异构图节点分类的模型“RGCN()”。
class RGCN(nn.Module):
def __init__(self, in_feats, hid_feats, out_feats, rel_names):
super().__init__()
self.conv1 = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(in_feats, hid_feats)
for rel in rel_names}, aggregate='sum')
self.conv2 = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(hid_feats, out_feats)
for rel in rel_names}, aggregate='sum')
def forward(self, graph, inputs):
h = self.conv1(graph, inputs)
h = {k: F.relu(v) for k, v in h.items()}
h = self.conv2(graph, h)
return h
边预测模型
class Model(nn.Module):
def __init__(self, in_features, hidden_features, out_features, rel_names):
super().__init__()
self.sage = RGCN(in_features, hidden_features, out_features, rel_names)
self.pred = HeteroDotProductPredictor()
def forward(self, g, x, etype):
h = self.sage(g, x)
return self.pred(g, h, etype)
开始训练
model = Model(10, 20, 5, hetero_graph.etypes)
user_feats = hetero_graph.nodes['user'].data['feature']
item_feats = hetero_graph.nodes['item'].data['feature']
label = hetero_graph.edges['click'].data['label']
train_mask = hetero_graph.edges['click'].data['train_mask']
node_features = {'user': user_feats, 'item': item_feats}
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
pred = model(hetero_graph, node_features, 'click')
loss = ((pred[train_mask] - label[train_mask]) ** 2).mean()
opt.zero_grad()
loss.backward()
opt.step()
print(loss.item())
异构图上的边分类任务
边分类任务与链接预测任务不同,边分类任务中两个节点间是已有边的,需要对其进行分类。
处理数据
略。还是用刚才那个手工构建的数据集。
预测分数计算
将端点表示拼接起来输入MLP,把输出作为边上的预测分数。这里的“apply_edges()”没有指明边的类型,表明对所有边都执行。
class HeteroMLPPredictor(nn.Module):
def __init__(self, in_dims, n_classes):
super().__init__()
self.W = nn.Linear(in_dims * 2, n_classes)
def apply_edges(self, edges):
x = torch.cat([edges.src['h'], edges.dst['h']], 1)
y = self.W(x)
return {'score': y}
def forward(self, graph, h):
with graph.local_scope():
graph.ndata['h'] = h
graph.apply_edges(self.apply_edges)
return graph.edata['score']
分类标签生成
我们的任务是给定一条“user”与“item”的边,判断该边的类型。“user”与“item”的边一共有“click”和“dislike”两种类型,所以需要将两种类型隐藏起来。于是,将它们合并为一种特殊的边类型“dgl.ETYPE”。通过切片操作即可实现这一过程:
dec_graph = hetero_graph['user', :, 'item']
edge_label = dec_graph.edata[dgl.ETYPE]
切片得到的子图“dec_graph”只有“user”和“item”两种节点,边类型合并为“dgl.ETYPE”,且将原来边的类型存储为边特征,可以作为标签使用。
节点表示生成模型
略。采用“RGCN()”。
边预测模型
输入给“HeteroMLPPredictor()”的是子图“dec_graph”和对应节点特征,返回的则是子图中边的预测分数。
class Model(nn.Module):
def __init__(self, in_features, hidden_features, out_features, rel_names):
super().__init__()
self.sage = RGCN(in_features, hidden_features, out_features, rel_names)
self.pred = HeteroMLPPredictor(out_features, len(rel_names))
def forward(self, g, x, dec_graph):
h = self.sage(g, x)
return self.pred(dec_graph, h)
开始训练
model = Model(10, 20, 5, hetero_graph.etypes)
user_feats = hetero_graph.nodes['user'].data['feature']
item_feats = hetero_graph.nodes['item'].data['feature']
node_features = {'user': user_feats, 'item': item_feats}
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
logits = model(hetero_graph, node_features, dec_graph)
loss = F.cross_entropy(logits, edge_label)
opt.zero_grad()
loss.backward()
opt.step()
print(loss.item())
完整代码
同构图上的边回归任务
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import dgl.function as fn
import dgl.nn as dglnn
src = np.random.randint(0, 100, 500)
dst = np.random.randint(0, 100, 500)
# 同时建立反向边
edge_pred_graph = dgl.graph((np.concatenate([src, dst]), np.concatenate([dst, src])))
# 建立点和边特征,以及边的标签
edge_pred_graph.ndata['feature'] = torch.randn(100, 10)
edge_pred_graph.edata['feature'] = torch.randn(1000, 10)
edge_pred_graph.edata['label'] = torch.randn(1000)
# 进行训练、验证和测试集划分
edge_pred_graph.edata['train_mask'] = torch.zeros(1000, dtype=torch.bool).bernoulli(0.6)
class DotProductPredictor(nn.Module):
def forward(self, graph, h):
with graph.local_scope():
graph.ndata['h'] = h
graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
return graph.edata['score']
class SAGE(nn.Module):
def __init__(self, in_feats, hid_feats, out_feats):
super().__init__()
self.conv1 = dglnn.SAGEConv(
in_feats=in_feats, out_feats=hid_feats, aggregator_type='mean')
self.conv2 = dglnn.SAGEConv(
in_feats=hid_feats, out_feats=out_feats, aggregator_type='mean')
def forward(self, graph, inputs):
h = self.conv1(graph, inputs)
h = F.relu(h)
h = self.conv2(graph, h)
return h
# class MLPPredictor(nn.Module):
# def __init__(self, in_features, out_classes):
# super().__init__()
# self.W = nn.Linear(in_features * 2, out_classes)
# def apply_edges(self, edges):
# h_u = edges.src['h']
# h_v = edges.dst['h']
# score = self.W(torch.cat([h_u, h_v], 1))
# return {'score': score}
# def forward(self, graph, h):
# with graph.local_scope():
# graph.ndata['h'] = h
# graph.apply_edges(self.apply_edges)
# return graph.edata['score']
class Model(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super().__init__()
self.sage = SAGE(in_features, hidden_features, out_features)
self.pred = DotProductPredictor()
def forward(self, g, x):
h = self.sage(g, x)
return self.pred(g, h)
node_features = edge_pred_graph.ndata['feature']
edge_label = edge_pred_graph.edata['label']
train_mask = edge_pred_graph.edata['train_mask']
model = Model(10, 20, 5)
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
pred = model(edge_pred_graph, node_features)
loss = ((pred[train_mask] - edge_label[train_mask]) ** 2).mean()
opt.zero_grad()
loss.backward()
opt.step()
print(loss.item())
异构图上的边回归任务
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import dgl.nn as dglnn
import dgl.function as fn
n_users = 1000
n_items = 500
n_follows = 3000
n_clicks = 5000
n_dislikes = 500
n_hetero_features = 10
n_user_classes = 5
n_max_clicks = 10
follow_src = np.random.randint(0, n_users, n_follows)
follow_dst = np.random.randint(0, n_users, n_follows)
click_src = np.random.randint(0, n_users, n_clicks)
click_dst = np.random.randint(0, n_items, n_clicks)
dislike_src = np.random.randint(0, n_users, n_dislikes)
dislike_dst = np.random.randint(0, n_items, n_dislikes)
hetero_graph = dgl.heterograph({
('user', 'follow', 'user'): (follow_src, follow_dst),
('user', 'followed-by', 'user'): (follow_dst, follow_src),
('user', 'click', 'item'): (click_src, click_dst),
('item', 'clicked-by', 'user'): (click_dst, click_src),
('user', 'dislike', 'item'): (dislike_src, dislike_dst),
('item', 'disliked-by', 'user'): (dislike_dst, dislike_src)})
hetero_graph.nodes['user'].data['feature'] = torch.randn(n_users, n_hetero_features)
hetero_graph.nodes['item'].data['feature'] = torch.randn(n_items, n_hetero_features)
hetero_graph.nodes['user'].data['label'] = torch.randint(0, n_user_classes, (n_users,))
hetero_graph.edges['click'].data['label'] = torch.randint(1, n_max_clicks, (n_clicks,)).float()
# randomly generate training masks on user nodes and click edges
hetero_graph.nodes['user'].data['train_mask'] = torch.zeros(n_users, dtype=torch.bool).bernoulli(0.6)
hetero_graph.edges['click'].data['train_mask'] = torch.zeros(n_clicks, dtype=torch.bool).bernoulli(0.6)
class HeteroDotProductPredictor(nn.Module):
def forward(self, graph, h, etype):
with graph.local_scope():
graph.ndata['h'] = h
graph.apply_edges(fn.u_dot_v('h', 'h', 'score'), etype=etype)
return graph.edges[etype].data['score']
class MLPPredictor(nn.Module):
def __init__(self, in_features, out_classes):
super().__init__()
self.W = nn.Linear(in_features * 2, out_classes)
def apply_edges(self, edges):
h_u = edges.src['h']
h_v = edges.dst['h']
score = self.W(torch.cat([h_u, h_v], 1))
return {'score': score}
def forward(self, graph, h, etype):
with graph.local_scope():
graph.ndata['h'] = h
graph.apply_edges(self.apply_edges, etype=etype)
return graph.edges[etype].data['score']
class RGCN(nn.Module):
def __init__(self, in_feats, hid_feats, out_feats, rel_names):
super().__init__()
self.conv1 = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(in_feats, hid_feats)
for rel in rel_names}, aggregate='sum')
self.conv2 = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(hid_feats, out_feats)
for rel in rel_names}, aggregate='sum')
def forward(self, graph, inputs):
h = self.conv1(graph, inputs)
h = {k: F.relu(v) for k, v in h.items()}
h = self.conv2(graph, h)
return h
class Model(nn.Module):
def __init__(self, in_features, hidden_features, out_features, rel_names):
super().__init__()
self.sage = RGCN(in_features, hidden_features, out_features, rel_names)
self.pred = HeteroDotProductPredictor()
def forward(self, g, x, etype):
h = self.sage(g, x)
return self.pred(g, h, etype)
model = Model(10, 20, 5, hetero_graph.etypes)
user_feats = hetero_graph.nodes['user'].data['feature']
item_feats = hetero_graph.nodes['item'].data['feature']
label = hetero_graph.edges['click'].data['label']
train_mask = hetero_graph.edges['click'].data['train_mask']
node_features = {'user': user_feats, 'item': item_feats}
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
pred = model(hetero_graph, node_features, 'click')
loss = ((pred[train_mask] - label[train_mask]) ** 2).mean()
opt.zero_grad()
loss.backward()
opt.step()
print(loss.item())
异构图上的边分类任务
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import dgl.nn as dglnn
import dgl.function as fn
n_users = 1000
n_items = 500
n_follows = 3000
n_clicks = 5000
n_dislikes = 500
n_hetero_features = 10
n_user_classes = 5
n_max_clicks = 10
follow_src = np.random.randint(0, n_users, n_follows)
follow_dst = np.random.randint(0, n_users, n_follows)
click_src = np.random.randint(0, n_users, n_clicks)
click_dst = np.random.randint(0, n_items, n_clicks)
dislike_src = np.random.randint(0, n_users, n_dislikes)
dislike_dst = np.random.randint(0, n_items, n_dislikes)
hetero_graph = dgl.heterograph({
('user', 'follow', 'user'): (follow_src, follow_dst),
('user', 'followed-by', 'user'): (follow_dst, follow_src),
('user', 'click', 'item'): (click_src, click_dst),
('item', 'clicked-by', 'user'): (click_dst, click_src),
('user', 'dislike', 'item'): (dislike_src, dislike_dst),
('item', 'disliked-by', 'user'): (dislike_dst, dislike_src)})
hetero_graph.nodes['user'].data['feature'] = torch.randn(n_users, n_hetero_features)
hetero_graph.nodes['item'].data['feature'] = torch.randn(n_items, n_hetero_features)
hetero_graph.nodes['user'].data['label'] = torch.randint(0, n_user_classes, (n_users,))
hetero_graph.edges['click'].data['label'] = torch.randint(1, n_max_clicks, (n_clicks,)).float()
# randomly generate training masks on user nodes and click edges
hetero_graph.nodes['user'].data['train_mask'] = torch.zeros(n_users, dtype=torch.bool).bernoulli(0.6)
hetero_graph.edges['click'].data['train_mask'] = torch.zeros(n_clicks, dtype=torch.bool).bernoulli(0.6)
dec_graph = hetero_graph['user', :, 'item']
print(dec_graph)
edge_label = dec_graph.edata[dgl.ETYPE]
class HeteroMLPPredictor(nn.Module):
def __init__(self, in_dims, n_classes):
super().__init__()
self.W = nn.Linear(in_dims * 2, n_classes)
def apply_edges(self, edges):
x = torch.cat([edges.src['h'], edges.dst['h']], 1)
y = self.W(x)
return {'score': y}
def forward(self, graph, h):
with graph.local_scope():
graph.ndata['h'] = h
graph.apply_edges(self.apply_edges)
return graph.edata['score']
class RGCN(nn.Module):
def __init__(self, in_feats, hid_feats, out_feats, rel_names):
super().__init__()
self.conv1 = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(in_feats, hid_feats)
for rel in rel_names}, aggregate='sum')
self.conv2 = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(hid_feats, out_feats)
for rel in rel_names}, aggregate='sum')
def forward(self, graph, inputs):
h = self.conv1(graph, inputs)
h = {k: F.relu(v) for k, v in h.items()}
h = self.conv2(graph, h)
return h
class Model(nn.Module):
def __init__(self, in_features, hidden_features, out_features, rel_names):
super().__init__()
self.sage = RGCN(in_features, hidden_features, out_features, rel_names)
self.pred = HeteroMLPPredictor(out_features, len(rel_names))
def forward(self, g, x, dec_graph):
h = self.sage(g, x)
return self.pred(dec_graph, h)
model = Model(10, 20, 5, hetero_graph.etypes)
user_feats = hetero_graph.nodes['user'].data['feature']
item_feats = hetero_graph.nodes['item'].data['feature']
node_features = {'user': user_feats, 'item': item_feats}
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
logits = model(hetero_graph, node_features, dec_graph)
loss = F.cross_entropy(logits, edge_label)
opt.zero_grad()
loss.backward()
opt.step()
print(loss.item())