线性代数张宇9讲 第八讲 相似矩阵与相似对角化

例题八

例8.14  设 A \bm{A} A 3 3 3阶矩阵, α 1 , α 2 , α 3 \bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3 α1,α2,α3是线性无关的 3 3 3维列向量,且满足 A α 1 = α 1 + α 2 + α 3 , A α 2 = 2 α 2 + α 3 , A α 3 = 2 α 2 + 3 α 3 . \bm{A\alpha}_1=\bm{\alpha}_1+\bm{\alpha}_2+\bm{\alpha}_3,\\\bm{A\alpha}_2=2\bm{\alpha}_2+\bm{\alpha}_3,\\\bm{A\alpha}_3=2\bm{\alpha}_2+3\bm{\alpha}_3. Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.

(1)求矩阵 B \bm{B} B,使得 A [ α 1 , α 2 , α 3 ] = [ α 1 , α 2 , α 3 ] B \bm{A}[\bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3]=[\bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3]\bm{B} A[α1,α2,α3]=[α1,α2,α3]B

  将题设条件合并成矩阵形式有
A [ α 1 , α 2 , α 3 ] = [ A α 1 , A α 2 , A α 3 ] = [ α 1 + α 2 + α 3 , 2 α 2 + α 3 , 2 α 2 + 3 α 3 ] = [ α 1 , α 2 , α 3 ] [ 1 0 0 1 2 2 1 1 3 ] , \begin{aligned} \bm{A}[\bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3]&=[\bm{A\alpha}_1,\bm{A\alpha}_2,\bm{A\alpha}_3]=[\bm{\alpha}_1+\bm{\alpha}_2+\bm{\alpha}_3,2\bm{\alpha}_2+\bm{\alpha}_3,2\bm{\alpha}_2+3\bm{\alpha}_3]\\ &=[\bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3]\begin{bmatrix}1&0&0\\1&2&2\\1&1&3\end{bmatrix}, \end{aligned} A[α1,α2,α3]=[Aα1,Aα2,Aα3]=[α1+α2+α3,2α2+α3,2α2+3α3]=[α1,α2,α3]111021023,
  故 B = [ 1 0 0 1 2 2 1 1 3 ] \bm{B}=\begin{bmatrix}1&0&0\\1&2&2\\1&1&3\end{bmatrix} B=111021023

(2)求矩阵 A \bm{A} A的特征值;

  因 α 1 , α 2 , α 3 \bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3 α1,α2,α3线性无关,故 C = [ α 1 , α 2 , α 3 ] \bm{C}=[\bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3] C=[α1,α2,α3]是可逆矩阵,且有 C − 1 A C = B \bm{C}^{-1}\bm{AC}=\bm{B} C1AC=B,即 A \bm{A} A B \bm{B} B相似,相似矩阵有相同的特征值。因
∣ λ E − B ∣ = ∣ λ − 1 0 0 − 1 λ − 2 − 2 − 1 − 1 λ − 3 ∣ = ( λ − 1 ) ( λ 2 − 5 λ + 4 ) = ( λ − 1 ) 2 ( λ − 4 ) = 0 , |\lambda\bm{E}-\bm{B}|=\begin{vmatrix}\lambda-1&0&0\\-1&\lambda-2&-2\\-1&-1&\lambda-3\end{vmatrix}=(\lambda-1)(\lambda^2-5\lambda+4)=(\lambda-1)^2(\lambda-4)=0, λEB=λ1110λ2102λ3=(λ1)(λ25λ+4)=(λ1)2(λ4)=0,
  故 B \bm{B} B的特征值为 1 , 1 , 4 1,1,4 1,1,4,所以 A \bm{A} A的特征值也为 1 , 1 , 4 1,1,4 1,1,4

(3)求可逆矩阵 P \bm{P} P,使得 P − 1 A P \bm{P}^{-1}\bm{AP} P1AP为对角矩阵。

  对于矩阵 B \bm{B} B,当 λ 1 = λ 2 = 1 \lambda_1=\lambda_2=1 λ1=λ2=1时,由 ( E − B ) x = 0 (\bm{E}-\bm{B})\bm{x}=\bm{0} (EB)x=0,即
[ 0 0 0 − 1 − 1 − 2 − 1 − 1 − 2 ] [ x 1 x 2 x 3 ] = [ 0 0 0 ] , \begin{bmatrix}0&0&0\\-1&-1&-2\\-1&-1&-2\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}, 011011022x1x2x3=000,
  得基础解系 ξ 1 = [ 1 , − 1 , 0 ] T , ξ 2 = [ − 2 , 0 , 1 ] T \bm{\xi}_1=[1,-1,0]^\mathrm{T},\bm{\xi}_2=[-2,0,1]^\mathrm{T} ξ1=[1,1,0]T,ξ2=[2,0,1]T
  当 λ 3 = 4 \lambda_3=4 λ3=4时,由 ( E − B ) x = 0 (\bm{E}-\bm{B})\bm{x}=\bm{0} (EB)x=0,即
[ 3 0 0 − 1 2 − 2 − 1 − 1 1 ] [ x 1 x 2 x 3 ] = [ 0

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值