第六章 实二次型

实二次型

6.1二次型 的定义及其矩阵表示

1.二次型的概念

n个变量 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn的二次齐次多项式

f ( x 1 , x 2 , . . . , x n ) = a 11 x 1 2 + 2 a 12 x 1 x 2 + . . . . + 2 a 1 n x 1 x n + a 22 x 2 2 + . . . + 2 a 2 n x 2 x n . . . . . . . + a n n x n 2 f(x_1,x_2,...,x_n)=a_{11}x^2_1+2a_{12}x_1x_2+....+2a_{1n}x_1x_n+a_{22}x^2_2+...+2a_{2n}x_2x_n.......+a_{nn}x^2_n f(x1,x2,...,xn)=a11x12+2a12x1x2+....+2a1nx1xn+a22x22+...+2a2nx2xn.......+annxn2

称为n元二次型,简称二次型。

系数 a i j ( i , j = 1 , 2 , . . . , n ) a_ij(i,j=1,2,...,n) aij(i,j=1,2,...,n)均为实数的n元二次型,简称实二次型 。

  1. 二次开型的矩阵与秩的概念

一般约定当 i ≠ j i\neq j i=j是, a i j = a j i a_{ij}=a_{ji} aij=aji,这样的 2 a i j x i x j = a i j x i x j + a j i x i x j 2a_{ij}x_ix_j=a_{ij}x_ix_j+a_{ji}x_ix_j 2aijxixj=aijxixj+ajixixj,于是二次型(1)式可以表示为

f ( x 1 , x 2 , . . . , x n ) = a 11 x 1 2 + a 12 x 1 x 2 + . . . + a 1 n x 1 x n + a 21 x 2 x 1 + a 22 x 2 2 + . . . + a 2 n x 2 x n + . . .   . . . + a n 1 x n x 1 + a n 2 x n x 2 + . . . + a n n x n 2 = ( x 1 , x 2 , . . . , x n ) ∣ a 11 , a 12 , . . . , a 1 n a 21 , a 22 , . . . , a 2 n . . . a n 1 , a n 2 , . . . , a n n ∣ ∣ x 1 x 2 . . . x n ∣ f(x_1,x_2,...,x_n)=a_{11}x^2_1+a_{12}x_1x_2+...+a_{1n}x_1x_n+a_{21}x_2x_1+a_{22}x^2_2+...+a_{2n}x_2x_n+...\ ...+a_{n1}x_nx_1+a_{n2}x_nx_2+...+a_{nn}x^2_n=(x_1,x_2,...,x_n)\left| \begin{matrix} a_{11},a_{12},...,a_{1n}\\ a_{21},a_{22},...,a_{2n}\\ ...\\ a_{n1},a_{n2},...,a_{nn}\\ \end{matrix} \right| \left| \begin{matrix} x_1\\ x_2\\ ...\\ x_n \end{matrix} \right| f(x1,x2,...,xn)=a11x12+a12x1x2+...+a1nx1xn+a21x2x1+a22x22+...+a2nx2xn+... ...+an1xnx1+an2xnx2+...+annxn2=(x1,x2,...,xn) a11,a12,...,a1na21,a22,...,a2n...an1,an2,...,ann x1x2...xn

如果我们记
x = ∣ x 1 x 2 . . . x n ∣ , A = ( a i j ) n ∗ n = ∣ a 11 , a 12 , . . . , a 1 n a 21 , a 22 , . . . , a 2 n . . . a n 1 , a n 2 , . . . , a n n ∣ x=\left|\begin{matrix} x_1\\ x_2\\ ...\\ x_n \end{matrix}\right| , A=(a_{ij})n*n=\left| \begin{matrix} a_{11},a_{12},...,a_{1n}\\ a_{21},a_{22},...,a_{2n}\\ ...\\ a_{n1},a_{n2},...,a_{nn} \end{matrix} \right| x= x1x2...xn ,A=(aij)nn= a11,a12,...,a1na21,a22,...,a2n...an1,an2,...,ann
,则上述二次型可以写为

f ( x 1 , x 2 , . . . , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i x j = x T A x . f(x_1,x_2,...,x_n)=\sum^{n}_{i=1}\sum^{n}_{j=1}a_{ij}x_ix_j=x^TAx. f(x1,x2,...,xn)=i=1nj=1naijxixj=xTAx.

其中矩阵A是一个n阶实对称矩阵,称为二次型 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1,x2,...,xn)的矩阵。

由二次型可唯一确定n阶实对称矩阵A;反之,给定n阶实对称矩阵A,可唯一确定n元二次型 f ( x 1 , x 2 , . . . , x n ) = x T A x f(x_1,x_2,...,x_n)=x^TAx f(x1,x2,...,xn)=xTAx。即n元二次型和n阶实对称矩阵之间有1-1对应关系。矩阵A的秩称为二次型 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1,x2,...,xn)的秩。

  1. 二次型的矩阵表示

二次型 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1,x2,...,xn)的矩阵A的主对角线上的元素为二次型平方项的系数,其他位置元素为交叉项系数的一半,即(i,i)位置为 x i 2 x^2_i xi2的系数 α \alpha α,当 i ≠ j i\neq j i=j时,(i,j)位置为 x i x j x_ix_j xixj的系数2a_{ij}的一半 a i j a_{ij} aij

6.2二次型的标准形

  1. 二次型的标准形
    从变量 y 1 , y 2 , . . . , y n y_1,y_2,...,y_n y1,y2,...,yn到变量 x 1 , x 2 , . . . x n x_1,x_2,...x_n x1,x2,...xn的线性变换为
    { x 1 = c 11 y 1 + c 12 y 2 + . . . + c 1 n y n x 2 = c 21 y 1 + c 22 y 2 + . . . + c 2 n y n . . . x n = c n 1 y 1 + c n 2 y 2 + . . . + c n n y n \left\{ \begin{matrix} x_1=c_{11}y_1+c_{12}y_2+...+c_{1n}y_n\\ x_2=c_{21}y_1+c_{22}y_2+...+c_{2n}y_n\\ ...\\ x_n=c_{n1}y_1+c_{n2}y_2+...+c_{nn}y_n \end{matrix} \right. x1=c11y1+c12y2+...+c1nynx2=c21y1+c22y2+...+c2nyn...xn=cn1y1+cn2y2+...+cnnyn

    简记 x = C y x=Cy x=Cy

    其中
    x = ∣ x 1 x 2 . . . x n ∣ , y = ∣ y 1 y 2 . . . y n ∣ , C = ∣ c 11 , c 12 , . . . , c 1 n c 21 , c 22 , . . . , c 2 n . . . c n 1 , c n 2 , . . . c n n ∣ x=\left| \begin{matrix} x_1\\ x_2\\ ...\\ x_n \end{matrix} \right| , y=\left| \begin{matrix} y_1\\ y_2\\ ...\\ y_n \end{matrix} \right| , C=\left| \begin{matrix} c_{11},c_{12},...,c_{1n}\\ c_{21},c_{22},...,c_{2n}\\ ...\\ c_{n1},c_{n2},...c_{nn} \end{matrix} \right| x= x1x2...xn ,y= y1y2...yn ,C= c11,c12,...,c1nc21,c22,...,c2n...cn1,cn2,...cnn

C = ( c i j ) C=(c_{ij}) C=(cij)为可逆矩阵时,上述变换称为可逆线性变换,当 C = ( c i j ) C=(c_{ij}) C=(cij)为正交矩阵时,称为正交变换。

对于二次型 f ( x 1 , x 2 , . . . , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i x j f(x_1,x_2,...,x_n)=\sum^n_{i=1}\sum^n_{j=1}a_{ij}x_ix_j f(x1,x2,...,xn)=i=1nj=1naijxixj,要寻求可逆线性变换 x = C y x=Cy x=Cy,使得二次型 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1,x2,...,xn)只含平方项,即:

f = k 1 y 1 2 + k 2 y 2 2 + . . . + k n y n 2 f=k_1y^2_1+k_2y^2_2+...+k_ny^2_n f=k1y12+k2y22+...+knyn2

这种只含平方项的二次型,称为二次型的标准型。

  1. 矩阵合同的概念

设A,B都是n阶矩阵,如果存在n阶可逆矩阵C使得 B = C T A C B=C^TAC B=CTAC,则称矩阵A与B是合同的,记为 A ≃ B A\simeq B AB.

矩阵的合同关系具有如下性质:
(1)反身性: A ≃ B A\simeq B AB

(2)对称性:若 A ≃ B A\simeq B AB,则 B ≃ A B\simeq A BA

(3)传递性:若 A ≃ B , B ≃ C A\simeq B,B\simeq C AB,BC,则 A ≃ C A\simeq C AC

  1. 用正交变换化二次型为标准型

    (1)若n阶实对称矩阵A的特征值是 γ 1 , γ 2 , . . . , λ n \gamma_1,\gamma_2,...,\lambda_n γ1,γ2,...,λn,则存在正交矩阵Q,使得
    Q T A Q = ∣ λ 1 ,   ,   ,     , λ 2 ,   ,   . . .   ,   ,   , λ n ∣ Q^TAQ=\left| \begin{matrix} \lambda_1,\ ,\ ,\ \\ \ ,\lambda_2,\ ,\ \\ ...\\ \ ,\ ,\ ,\lambda_n \end{matrix} \right| QTAQ= λ1, , ,  ,λ2, , ... , , ,λn

(2)对任意n元实二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx,存在正交变换x=Qy,将f化成标准形
f = λ 1 y 1 2 + λ 2 y 2 2 + . . . + λ n y n 2 f=\lambda_1y^2_1+\lambda_2y^2_2+...+\lambda_ny^2_n f=λ1y12+λ2y22+...+λnyn2
其中, λ 1 , λ 2 , . . . λ n \lambda_1,\lambda_2,...\lambda_n λ1,λ2,...λn是A的全部特征值。

(3)用正交变换化二次型为标准形的步骤

  • 1 写出二次型的矩阵A;
  • 2求出矩阵A的全部特征值;
  • 3求得正交矩阵Q,使得 Q T A Q = d i a g ( λ 1 , λ 2 , . . . , λ n ) Q^TAQ=diag(\lambda_1,\lambda_2,...,\lambda_n) QTAQ=diag(λ1,λ2,...,λn)
  • 4 作正交变换 x = Q y x=Qy x=Qy,得到标准形 f = λ 1 y 1 2 + λ 2 y 2 2 + . . . . . + λ n y n 2 f=\lambda_1y^2_1+\lambda_2y^2_2+.....+\lambda_ny^2_n f=λ1y12+λ2y22+.....+λnyn2,其中 λ 1 , λ 2 , . . . λ n \lambda_1,\lambda_2,...\lambda_n λ1,λ2,...λn的排序与Q中特征向量的排序相对应。
  1. 用配方法化二次型为标准型。
    一般来说用配方法化二次型为标准形的原则是:如果含有 x 1 2 x^2_1 x12,将含有 x 1 x_1 x1的项放在一起配成完全平方后,剩余的项中不再含有 x 1 x_1 x1,如果剩余项中含有 x 2 2 x^2_2 x22,继续配方后,剩余的项中不再含有 x 2 x_2 x2,如此继续下去,将所有项均配成完全平方,这时所做的线性变换是可逆变换,如果二次型中没有平方项,用适当的可逆线性变换使二次型中出现平方项,再进行上述的配方过程。

  2. 二次型的规范形
    设秩为r的实二次型 f ( x 1 , x 2 , . . . , x n ) = x T A x f(x_1,x_2,...,x_n)=x^TAx f(x1,x2,...,xn)=xTAx经可逆线性变换 x = C y x=Cy x=Cy化为标准形
    f = d 1 y 1 2 + d 2 y 2 2 + . . . + d n y n 2 f=d_1y^2_1+d_2y^2_2+...+d_ny^2_n f=d1y12+d2y22+...+dnyn2

    不妨设 d 1 , d 2 , . . . , d p > 0 , d p + 1 , d p + 2 , . . . , d r < 0 , d r + 1 = d r + 2 = . . . = d n = 0 d_1,d_2,...,d_p>0,d_{p+1},d_{p+2},...,d_{r}<0,d_{r+1}=d_{r+2}=...=d_{n}=0 d1,d2,...,dp>0,dp+1,dp+2,...,dr<0,dr+1=dr+2=...=dn=0,再作可逆线性变换

{ z 1 = d 1 y 1 . . . z p = d p y p z p + 1 = − d p + 1 y p + 1 . . . z r = − d r y r z r + 1 = y r + 1 . . . z n = y n \left\{ \begin{matrix} z_1=\sqrt{d_1}y_1\\ ...\\ z_p=\sqrt{d_p}y_p\\ z_{p+1}=\sqrt{-d_{p+1}}y_{p+1}\\ ...\\ z_r=\sqrt{-d_r}y_r\\ z_r+1=y_{r+1}\\ ...\\ z_n=y_n \end{matrix} \right. z1=d1 y1...zp=dp ypzp+1=dp+1 yp+1...zr=dr yrzr+1=yr+1...zn=yn

二次型进一步化为标准形

f = z 1 2 + . . . + z p 2 − z p + 1 2 − . . . − z r 2 f=z^2_1+...+z^2_p-z^2_{p+1}-...-z^2_r f=z12+...+zp2zp+12...zr2

称其为实二次型 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1,x2,...,xn)的规范形。

  1. 惯性定律

实二次型都能用可逆的线性变换化为规范形,且规范形是唯一的。

由惯性定理知,尽管实二次型 f ( x 1 , x 2 , . . . , x n ) f(x1_,x_2,...,x_n) f(x1,x2,...,xn)的标准形不唯一,但标准形中正平方项的个数p是唯一确定的,负平方项的个数q=r-p也是唯一确定的(r为二次型的秩)分别称为实二次型 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1,x2,...,xn)的正惯性指数和负惯性指数,p-q称为二次型的符号差。

6.3 正定二次型与正定矩阵

1.正定二次型与正定矩阵的概念

f ( x 1 , x 2 , . . . , x n ) = x T A x f(x_1,x_2,...,x_n)=x^TAx f(x1,x2,...,xn)=xTAx是一个实二次型,若对任意非零向量 α = ( a 1 , a 2 , . . . , a n ) T ≠ 0 \alpha = (a_1,a_2,...,a_n)^T\neq 0 α=(a1,a2,...,an)T=0,都有 f ( a 1 , a 2 , . . . , a n ) = α T A α f(a_1,a_2,...,a_n)=\alpha^TA\alpha f(a1,a2,...,an)=αTAα,称二次型f为正定二次型,称实对称矩阵A为正定矩阵。

  1. 二次型为正定二次型的充分必要条件

(1)n元实二次型 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1,x2,...,xn)正定的充分必要条件是f的正惯性指数为n。

(2)实二次型 f ( x 1 , x 2 , . . . , x n ) = x T A x f(x_1,x_2,...,x_n)=x^TAx f(x1,x2,...,xn)=xTAx正定的充分必要条件是矩阵A的特征值都 大于零。

(3)实对称矩阵A正定的充分必要条件是矩阵A特征值都大于零。

(4)n元实二次型 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1,x2,...,xn)正定的充分必要条件是其规范形为

z 1 2 + z 2 2 + . . . + z n 2 z^2_1+z^2_2+...+z^2_n z12+z22+...+zn2

(5)实二次型 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1,x2,...,xn)正定的充分必要条件是A合同于单位矩阵。

(6)实对称矩阵A正定的充分必要条件是矩阵A合同于单位矩阵

(7)正定矩阵的行列式大于零

(8)设A是实对称矩阵,则A正定的充分必要条件是A的顺序主子式均大于零。

3.半正定(负定,半负定)二次型与半正定(负定,半负定)矩阵的概念。

设定 f ( x 1 , x 2 , . . . , x n ) = x T A x f(x_1,x_2,...,x_n)=x^TAx f(x1,x2,...,xn)=xTAx是一个实二次型,若对任意非零向量 α = ( a 1 , a 2 , . . . , a n ) T ≠ 0 \alpha = (a_1,a_2,...,a_n)^T\neq 0 α=(a1,a2,...,an)T=0,都有 f ( a 1 , a 2 , . . . , a n ) = α T A α < 0 f(a_1,a_2,...,a_n)=\alpha^TA\alpha<0 f(a1,a2,...,an)=αTAα<0,称二次型f为负定二次型,称实对称矩阵A为负定矩阵;若对任意非零向量 α = ( a 1 , a 2 , . . . , a n ) T ≠ 0 \alpha=(a_1,a_2,...,a_n)^T\neq 0 α=(a1,a2,...,an)T=0都有 f ( a 1 , a 2 , . . . , a n ) = α T A α ⪖ 0 ( ⪕ 0 ) f(a_1,a_2,...,a_n)=\alpha^TA\alpha\eqslantgtr 0(\eqslantless 0) f(a1,a2,...,an)=αTAα0(0),则称二次型f为正(负)定二次型,并称实对称矩阵A为半正(负)定矩阵;不是正定,负定,半正定,半负定的二次型称为不定二次型,相应的矩阵称为不定矩阵。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值