一、ES基本概念介绍
1.ES简介
ES是一个分布式、可扩展的、近实时的,有数据搜索、分析与存储的引擎。支持全文搜索、结构化搜索、半结构化搜索、数据分析、地理位置和对象间关联关系搜索等功能。
近实时:非实时,数据不是实时最新的。
其底层基于Lucene,但Lucene比较复杂,面向普通应用开发者而言,易用性不是很好,同时对于目前的主流分布式架构支持也不好,所以就诞生了ES。
ES使用Java编写,它的内部使用Lucene做索引与搜索,隐藏了Lucene的复杂性,面向开发者暴露了即使不同编程语言也基本一致的API和Client,方便大家将搜索功能快速植入到日常应用中。
2.ES使用场景
(1)全文检索
ES的主要应用场景之一,类似于Google搜索,百度搜索和维基百科等,对全文关键字进行检索。
(2)日志分析
海量数据进行近实时的处理,对复杂的日志进行分析,得到我们想要的结果
(3)复杂条件查询
数据量很大,又需要各种条件查询,实时的返回查询数据结果,如管理后台
(4)相似搜索,模糊匹配,地理位置聚合等
3.ES基本概念
(1)文档(Document)
是在ES中可以被索引的基本单位,以JSON标识,类似于关系数据库中的一行
(2)类型(Type)
表示一类相似的文档,作为一个元数据来实现逻辑划分,类似于关系数据库中的表
(3)索引(Index)
索引是具有相似特征的文档的集合,类似于关系数据库中的数据库。
4.ES的节点、分片
默认情况下,每个索引由5个主要分片组成,每份主要分片又有一个副本,一共10个分片。
分片是ES所处理的最小单元,一份分片是Lucene的索引,包含倒排索引的文件目录,分片仅保存了全部数据中的一部分。
副本分片是主分片的拷贝,副本分片作为硬件故障时数据的备份,并为搜索和返回文档等读操作提供服务。副本分片可以提高可用性和性能。
默认的,文档在分片上均匀分布,通过文档ID字符串的散列决定分布到哪个分片,每份分片拥有相同的散列范围,接收新文档的机会均等。一旦目标分片确定,接收请求的节点将文档转发到该分片所在的节点,随后索引操作在所有目标分片的所有副本分片中进行。
写索引只能写在主分片上,然后同步到副本分片,ES写入哪个分片是由文档ID的hash值决定的,公式如下:
shard = hash(routing) % number_of_primary_shards