Singular value decomposition

SVD is a factorization of a real or complex matrix. It has many useful applications in signal processing and statistics.
Formally, the singular value decomposition of an m×n real or complex matrix M is a factorization of the form UΣV.
U is an m×m real or complex unitary matrix.
Σ is an m×n rectangular diagnal matrix with non-negative real numbers on the diagnal.
V is an n×n real or complex unitary matrix.
the diagnal entries Σi,i of Σ are known as the singular values of M .
the left-singular vectors: columns of matrix U.
the right-singular vectors: columns of matrix V .
Wikipedia https://en.wikipedia.org/wiki/Singular_value_decomposition


unitary matrix : a complex square matrix U is unitary if its conjugate transpose U is also its inverse — that is, if

UU=UU=I,
where I is the identity matrix.
U is the conjugate transpose of matrix U .


identity matrix: is the n×n square matrix with ones on the main diagnal and zeros else where.


the left-singular vectors of M are a set of orthonormal eigenvectors of MM :
M=UΣV
MM=(UΣV)(UΣV)
MM=UΣVV(UΣ)
MM=UΣΣU
MMU=UΣΣUU
MMU=UΣΣ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值